

03/31/2006

ENSR Consulting & Engineering - NJ 20 New England Ave Piscataway, NJ 08854

Attention: Mr. Greg Micalizio

STL Edison 777 New Durham Road Edison, NJ 08817

Tel 732 549 3900 Fax 732 549 3679 www.stl-inc.com

Laboratory Results
Job No. O531 - Phillipsburg

Dear Mr. Micalizio:

Enclosed are the results you requested for the following sample(s) received at our laboratory on March 10, 2006.

<u>Lab No.</u> <u>Client ID</u> <u>Analysis Required</u>

715188 425LOCK 524.2

An invoice for our services is also enclosed. If you have any questions please contact your Project Manager, David Lissy, at (732) 549-3900.

Very Truly Yours,

Michael S. Ubos

Michael J. Urban Laboratory Manager

Analytical Results Summary	1
General Information	5
Chain of Custody	5
Laboratory Chronicles	7
Methodology Review	9
Data Reporting Qualifiers	13
Non-Conformance Summary	15
•	
GC/ MS Forms and Data (Volatiles)	17
Results Summary and Chromatograms	17
Tuning Results Summary	26
Method Blank Results Summary	41
Surrogate Compound Recovery Summary	95
Spike Recovery Summary	99
Internal Standard Area and RT Summary	117
Injection Log Book	122
This is the Last Page of the Document	127

Analytical Results Summary

Client ID: 425LOCK Lab Sample No: 715188

Lab Job No: 0531 Site: Phillipsburg

Date Sampled: 03/10/06 Date Received: 03/10/06 Date Analyzed: 03/17/06 Matrix: WATER Level: DW

Purge Volume: 25.0 ml GC Column: DB624
Instrument ID: VOAMS5.i Dilution Factor: 1.0

Lab File ID: e40871.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: uq/l</u>
Dichlorodifluoromethane	ND	0.5
Chloromethane	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	0.5
Chloroethane	ND	0.5
Trichlorofluoromethane	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Bromochloromethane	ND	0.5
Chloroform	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
Benzene	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	0.7	0.5
1,2-Dichloropropane	ND	0.5
Dibromomethane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
1,3-Dichloropropane	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
-		

Client ID: 425LOCK Lab Sample No: 715188

Site: Phillipsburg Lab Job No: 0531

Date Sampled: 03/10/06 Matrix: WATER
Date Received: 03/10/06 Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e40871.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Xylene (Total)	ND	0.5
Styrene	ND	0.5
Bromoform	ND	0.5
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
Bromobenzene	ND	0.5
1,2,3-Trichloropropane	ND	0.5
n-Propylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
m-Dichlorobenzene	ND	0.5
4-Isopropyltoluene	ND	0.5
p-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
o-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
MTBE	ND	0.5

Client ID: 425LOCK Lab Sample No: 715188

Lab Job No: 0531 Site: Phillipsburg

Date Sampled: 03/10/06 Matrix: WATER Date Received: 03/10/06 Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624 Instrument ID: VOAMS5.i Dilution Factor: 1.0

Lab File ID: e40871a.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	ND	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

General Information

Chain of Custody

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

CHAIN OF CUSTODY / ANALYSIS REQUEST

LAB USE ONLY Project No: C C クシアンのの Numbers Sample Job No: PAGE Water Metals Filtered (Yes/No)? Other: O Paris Company Company ANALYSIS REQUESTED (ENTER "X" BELOW TO INDICATE REQUEST Site/Project Identification State (Location of site): Regulatory Program: Received by Received by P Water: Date / Time Soil: Date / Time No. of. Cont. Samplers Name (Printed 437 Rush Chafges Authorized For: Analysis Turnaroyad Time Matrix Standard C Preservation Used: 1 = ICE, 2 = HCl, 3 = H₂SO₄, 4 = HNO₃, 5 = NaOH 1 Week Other 120 2 Week P.O. # 5/0/8 Date 7 = Other Company Company とととなると Sample Identification Phone Phone 189-0300 6 = Other Name (for report and invojce Special Instructions Relingation Relinquished by Company Address 3

Rhode Island (132).
Connecticut (PH-0200),
Pennsylvania (68-522),
New York (11452),
New Jersey (12028),
Laboratory Certifications:

Company

Received by

Date / Time

Company

Relinquished by

4

3

Company

Received by

Date / Time

Company

Relinquished by

5

Laboratory Chronicles

INTERNAL CUSTODY RECORD AND LABORATORY CHRONICLE STL Edison

777 New Durham Road, Edison, New Jersey 08817

Job No:	O531	Site:	Phillipsburg
Client:	ENSR Consulting & Engineering - NJ		
	VOAMS		

WATER - 524.2

Lab Sample ID	Date Sampled	Date Received	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
715188	3/10/2006	3/10/2006			3/17/2006	Deng, Lily	1425
715188	3/10/2006	3/10/2006			3/17/2006	Deng, Lily	1427

Methodology Review

Analytical Methodology Summary

Volatile Organics:

Unless otherwise specified, water samples are analyzed for volatile organics by purge and trap GC/MS as specified in EPA Method 624. Drinking water samples are analyzed by EPA Method 524.2 Rev 4.1. Solid samples are analyzed for volatile organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8260B.

Acid and Base/Neutral Extractable Organics:

Unless otherwise specified, water samples are analyzed for acid and/or base/neutral extractable organics by GC/MS in accordance with EPA Method 625. Solids are analyzed for acid and/or base/neutral extractable organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8270C.

GC/MS Nontarget Compound Analysis:

Analysis for nontarget compounds is conducted, upon request, in conjunction with GC/MS analyses by EPA Methods 624, 625, 8260B and 8270C. Nontarget compound analysis is conducted using a forward library search of the EPA/NIH/NBS mass spectral library of compounds at the greatest apparent concentration (10% or greater of the nearest internal standard) in each organic fraction (15 for volatile, 15 for base/neutrals and 10 for acid extractables).

Organochlorine Pesticides and PCBs:

Unless otherwise specified, water samples are analyzed for organochlorine pesticides and PCBs by dual column gas chromatography with electron capture detectors as specified in EPA Method 608. Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8081A for organochlorine pesticides and Method 8082 for PCBs.

Total Petroleum Hydrocarbons:

Water samples are analyzed for petroleum hydrocarbons by I.R. using EPA Method 418.1. Solid samples are prepared for analysis by soxhlet extraction consistent with the March 1990 N.J. DEP "Remedial Investigation Guide" Appendix A, page 52, and analyzed by U.S. EPA Method 418.1

Metals Analysis:

Metals analyses are performed by any of four techniques specified by a Method Code provided on each data report page, as follows:

- P Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP)
- A Flame Atomic Absorption
- F Furnace Atomic Absorption
- CV Manual Cold Vapor (Mercury)

Water samples are digested and analyzed using EPA methods provided in "Methods for Chemical Analysis of Water and Wastewater" (EPA 600/4-79-020). Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition); samples are digested according to Method 3050B "Acid Digestion of Soil, Sediments and Sludges."

Specific method references for ICP analyses are water Method - 200.7/SW846 6010B and for solid matrix - 6010B. Mercury analyses are conducted by the manual cold vapor technique specified by water Method 245.1/7470A and solid Method 7471A. Other specific Atomic Absorption method references are as follows:

Element	Water Test Method <u>Furnace</u>	Solid Test Method Furnace
Antimony	200.9	7041
Arsenic	200.9	7060A
Cadmium	200.9	7131A
Lead	200.9	7421
Selenium	200.9	7740
Thallium	200.9	7841

Cyanide:

Water samples are analyzed for cyanide using EPA Method 335.3. Cyanide is determined in solid samples as specified in the EPA Contract Laboratory Program IFB dated July 1988, revised February 1989.

Phenols:

Water samples are analyzed for total phenols using EPA Method 420.2. Total phenols are determined in water and solid samples by preparing the sample as outlined in the EPA Contract Laboratory Program IFB for cyanide, followed by a phenols determination using EPA Method 420.1.

Hexavalent Chromium:

Water samples are analyzed using EPA Method 7196A, EPA Method 7199 or (upon request) USGS -1230-35. Soil samples are subjected to alkaline digestion via EPA Method 3060A prior to analysis by EPA Method 7196A or EPA Method 7199.

Cleanup of Semivolatile Extracts:

Upon request Method 3611B Alumina Column Cleanup and/or Method 3650B Acid-Base Partition Cleanup are performed to improve detection limits by the removal of saturated hydrocarbon interferences.

Hazardous Waste Characteristics:

Samples for hazardous waste characteristics are analyzed as specified in the U.S. EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition). Specific method references are as follows:

Ignitability - Method 1020A

Corrosivity - Water pH Method 9040B Soil pH Method 9045C

Reactivity - Chapter 7, Section 7.3.3 and 7.3.4 respectively for hydrogen cyanide and hydrogen sulfide release

Toxicity - TCLP Method 1311

Miscellaneous Parameters:

Additional analyses performed on both aqueous and solid samples are in accordance with methods published in the following references:

- Test Methods for Evaluating Solid Wastes, SW-846 3rd Edition, November 1986.
- Standard Methods for the Examination of Water and Wastewater, 18th Edition.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, 1979.

Data Reporting Qualifiers

DATA REPORTING QUALIFIERS

- ND The compound was not detected at the indicated concentration.
 - J Mass spectral data indicates the presence of a compound that meets the identification criteria. The result is less than the specified detection limit but greater than zero. The concentration given is an approximate value.
 - B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 - P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 - * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

Non-Conformance Summary

Nonconformance Summary

STL Edison Job Number: 0531

Client: ENSR Consulting & Engineering - NJ

Date: 3/28/2006

Sample Receipt:

Sample delivery conforms with requirements.

Volatile Organic Analysis (GC/MS):

All data conforms with method requirements.

I certify that the test results contained in this data package meet all requirements of NELAC both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael J.Urban Laboratory Manager

Michael S. Ubas

GC/MS Forms and Data (Volatiles)

Results Summary and Chromatograms

Client ID: 425LOCK Lab Sample No: 715188

Site: Phillipsburg Lab Job No: 0531

Date Sampled: 03/10/06 Matrix: WATER Date Received: 03/10/06 Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e40871.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Dichlorodifluoromethane	ND	0.5
Chloromethane	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	0.5
Chloroethane	ND	0.5
Trichlorofluoromethane	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Bromochloromethane	ND	0.5
Chloroform	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
Benzene	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	0.7	0.5
1,2-Dichloropropane	ND	0.5
Dibromomethane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
1,3-Dichloropropane	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5

Client ID: 425LOCK Lab Sample No: 715188

Site: Phillipsburg Lab Job No: O531

Date Sampled: 03/10/06 Matrix: WATER
Date Received: 03/10/06 Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e40871.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Xylene (Total) Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene m-Dichlorobenzene 4-Isopropyltoluene p-Dichlorobenzene n-Butylbenzene n-Butylbenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	ND N	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
MTBE	ND	0.5

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40871.d

Report Date: 20-Mar-2006 13:35

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40871.d

Lab Smp Id: 715188
Inj Date : 17-MAR-2006 18:02
Operator : VOAMS 5
Smp Info : 715188 Client Smp ID: 425LOCK

Inst ID: VOAMS5.i

Misc Info: 0531;1425;;LD

Comment

: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524 2 05.m Method Meth Date: 20-Mar-2006 13:30 lily Quant Type: ISTD Cal Date : 17-MAR-2006 12:01 Cal File: e40859.d

Als bottle: 20

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 524.sub

Target Version: 3.50

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000	Dilution Factor Sample Volume

Cpnd Variable

Local Compound Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==			======	
* 2 Fluorobenzene	96	8.368	8.325 (1.000)	1428525	5.00000	
21 Trichloroethene	95	8.778	8.736 (1.049)	74462	0.65513	0.66
\$ 42 4-Bromofluorobenzene (SUR)	95	15.238	15.219 (1.821)	719551	4.67326	4.7
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.068	18.040 (2.159)	409595	4.49648	4.5

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40871.d

Date : 17-MAR-2006 18:02

Client ID: 425LOCK Instrument: VOAMS5.i

Sample Info: 715188

Purge Volume: 25.0 Operator: VOAMS 5

Column phase: DB624 Column diameter: 0.53

21 Trichloroethene Concentration; 0,66 ug/L

Client ID: 425LOCK Lab Sample No: 715188

Site: Phillipsburg Lab Job No: 0531

Matrix: WATER Date Sampled: 03/10/06 Date Received: 03/10/06 Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624
Instrument ID: VOAMS5.i Dilution Factor: 1.0

Lab File ID: e40871a.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result Units: ug/l	Quantitation Limit <u>Units: ug/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	ND	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40871a.d

Report Date: 20-Mar-2006 13:35

STL Edison

VOLATILE ORGANICS - METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40871a.d Lab Smp Id: 715188 Client Smp ID: 425LOCK Inj Date: 17-MAR-2006 18:02 Client Smp ID: 425LOCK

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : 715188

Misc Info: 0531;1427;;LD

Comment

: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4 04.m Method

Meth Date: 20-Mar-2006 13:34 lily Quant Type: ISTD Cal File: e40746.d Cal Date : 07-MAR-2006 15:17

Als bottle: 20

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value /	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
**************************************	====	==				
* 2 Fluorobenzene	96	8.368	8.336 (1.000)	1451087	5.00000	
\$ 42 4-Bromofluorobenzene (SUR)	95	15.238	15.226 (1.821)	719551	4.28984	4.3
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.068	18.044 (2.159)	409595	4.13555	4.1

Tuning Results Summary

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40852 BFB Injection Date: 03/17/06

Instrument ID: VOAMS5 BFB Injection Time: 0752

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 80.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	20.0 45.5 100.0 6.8 0.0 (0.0)1 69.8 5.1 (7.3)1 67.5 (96.7)1 4.3 (6.4)2
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	-	LAB	LAB	DATE	TIME
	CLIENT ID	SAMPLE No.	FILE ID	ANALYZED	ANALYZED
	=========	=======================================	=======================================	=======	========
01	ESTD002	ESTD002	E40853	03/17/06	0823
02	ESTD005	ESTD005	E40855	03/17/06	0954
03	ESTD020	ESTD020	E40856	03/17/06	1025
04	ESTD040	ESTD040	E40857	03/17/06	1055
05	ESTD001	ESTD001	E40859	03/17/06	1201
06	1425BS	1425BS	E40860	03/17/06	1233
07	1425BSD	1425BSD	E40861	03/17/06	1303
08	EV076	EV076	E40864	03/17/06	1433
09			<u> </u>		
10					
11					
12					
13	· <u></u>				
14					
15					
16					
17			- 		
18					***************************************
19			-		
20					
21				-	
22					

page 1 of 1

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40852 BFB Injection Date: 03/17/06

Instrument ID: VOAMS5 BFB Injection Time: 0752

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		
50	15.0 - 40.0% of mass 95	20.0
75	30.0 - 80.0% of mass 95	45.5
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	69.8
175	5.0 - 9.0% of mass 174	5.1 (7.3)1
176	95.0 - 101.0% of mass 174	67.5 (96.7)1
177	5.0 - 9.0% of mass 176	4.3 (6.4)2
·	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		LAB	LAB	DATE	TIME
	CLIENT ID	SAMPLE No.	FILE ID	ANALYZED	ANALYZED
		=========	=========	========	=======
01	ESTD002	ESTD002	E40853	03/17/06	0823
02	ESTD005	ESTD005	E40855	03/17/06	0954
03	ESTD020	ESTD020	E40856	03/17/06	1025
04	ESTD040	ESTD040	E40857	03/17/06	1055
05	ESTD001	ESTD001	E40859	03/17/06	1201
06	EV076	EV076	E40864	03/17/06	1433
07	425LOCK	715188	E40871	03/17/06	1802
80					
09					
10					-
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40852.d

Date : 17-MAR-2006 07:52

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076

Operator: VOAMS 8

Column diameter: 0.53

Column phase: DB-624 1 Bromofluorobenzene

Data File: /ohem/VOAMS5.i/524/03-17-06/17mar06.b/e40852.d

Date : 17-MAR-2006 07:52

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076

Operator: VOAMS 8

Column phase: DB-624

Column diameter: 0.53

Data File: e40852.d

Spectrum: Avg. Scans 60-62 (7.43), Background Scan 55

Location of Maximum: 95.00 Number of points: 102

36.00 37.00 38.00 39.00 42.00 44.00 45.00 48.00	1720 8018 5948 1908 198 1185 1783 2683 934	 	67,00 68,00 69,00 70,00 71,00 72,00 73,00	732 13578 12598 1020 7	 -	104.00 105.00	606 199 694	 	152.00 155.00 157.00 161.00 163.00	39 264 5 44 45
38,00 39,00 12,00 14,00 15,00	5948 1908 198 1185 1783 2683	 - - 	69,00 70,00 71,00 72,00	12598 1020 7	1 ! !	105.00	199 694	l l	157.00 161.00	5 44
39,00 12,00 14.00 15,00	1908 198 1185 1783 2683	 - - 	70,00 71,00 72,00	1020 7	 -	106.00	694	l	161.00	44
12.00 14.00 15.00 17.00	198 1185 1783 2683	 - 	71.00 72.00	7	 -	•			•	
14.00 15.00 17.00	1185 1783 2683	+- 1 1	72,00		+	111.00	188	 -	163.00	45
5.00 7.00	1783 2683	ı	•	1131	T'					
7,00	2683		73.00		1	113.00	92	ı	167,00	355
		ı	+	6047	1	116.00	271	į	169,00	253
8,00	934	•	74,00	19344	ı	117.00	682	t	174,00	99112
		į.	75,00	64576	ı	118.00	765	ı	175,00	7256
19.00	6319	L	76,00	5212	1	119.00	623	l	176,00	95808
50,00	28368	+-	78.00	76 9	+-	120,00	198	+- I	177.00	6144
1.00	7400	1	79,00	3040	ı	121.00	679	ŀ	178,00	563
2.00	881	1	80,00	1174	ı	123.00	178	ŀ	184,00	114
3,00	758	ı	81.00	3026	ì	128,00	16	ı	185.00	180
4.00	213	I	82,00	490	I	129.00	67	i	189,00	420
	146	+-	84.00	403	+- 	130.00	409	+- !	191.00	93
									192.00	96
						133.00	8	ı	203,00	439
8.00			87,00		ı	135.00	287	1	207,00	194
9.00	112	ı	88,00	5800	ŀ	137.00	187	1	209,00	562
0.00	1355	+- !	91,00	1206	+- 	139.00	74	+- !	223,00	198
				2965	ı	141.00	966	ı	249,00	172
2.00		ı	93.00		ı	143.00		ļ	253.00	95
3,00			94.00	13623	j	147,00	243	1	260.00	217
4,00	534	ł	95.00	141888	ı	148,00	437	i		
6.00	249	+ I	96,00	9673	+-	149.00	205	 		
	9,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 1,00 2,00 3,00 4,00	9,00 6319 0,00 28368 1,00 7400 2,00 881 3,00 758 4,00 213 5,00 146 6,00 2318 7,00 2616 8,00 795 9,00 112 0,00 1355 1,00 6798 2,00 6317 3,00 4510 4,00 534	9,00 6319 6,00 28368 1,00 7400 2,00 881 3,00 758 4,00 213 5,00 146 6,00 2318 7,00 2616 8,00 795 9,00 112	9,00 6319 76,00 10,00 28368 78,00 11,00 7400 79,00 2,00 881 80,00 3,00 758 81,00 4,00 213 82,00 5,00 146 84,00 6,00 2318 85,00 7,00 2616 86,00 8,00 795 87,00 9,00 112 88,00 0,00 1355 91,00 1,00 6798 92,00 2,00 6317 93,00 3,00 4510 94,00 4,00 534 95,00	9,00 6319 76,00 5212 10,00 28368 78,00 769 1,00 7400 79,00 3040 2,00 881 80,00 1174 3,00 758 81,00 3026 4,00 213 82,00 490 5,00 146 84,00 403 6,00 2318 85,00 240 7,00 2616 86,00 208 8,00 795 87,00 6843 9,00 112 88,00 5800 0,00 1355 91,00 1206 1,00 6798 92,00 2965 2,00 6317 93,00 4375 3,00 4510 94,00 13623 4,00 534 95,00 141888	9,00 6319 76,00 5212 10,00 28368 78,00 769 11,00 7400 79,00 3040 2,00 881 80,00 1174 3,00 758 81,00 3026 4,00 213 82,00 490 5,00 146 84,00 403 6,00 2318 85,00 240 7,00 2616 86,00 208 8,00 795 87,00 6843 9,00 112 88,00 5800 0,00 1355 91,00 1206 1,00 6798 92,00 2965 2,00 6317 93,00 4375 3,00 4510 94,00 13623 4,00 534 95,00 141888	9,00 6319 76,00 5212 119,00 10,00 28368 78,00 769 120,00 1,00 7400 79,00 3040 121,00 2,00 881 80,00 1174 123,00 3,00 758 81,00 3026 128,00 4,00 213 82,00 490 129,00 5,00 146 84,00 403 130,00 6,00 2318 85,00 240 131,00 7,00 2616 86,00 208 133,00 8,00 795 87,00 6843 135,00 9,00 112 88,00 5800 137,00 0,00 1355 91,00 1206 139,00 1,00 6798 92,00 2965 141,00 2,00 6317 93,00 4376 143,00 3,00 4510 94,00 13623 147,00 4,00 534 95,00 141888 148,00	9.00 6319 76.00 5212 119.00 623 0.00 28368 78.00 769 120.00 198 1.00 7400 79.00 3040 121.00 679 2.00 881 80.00 1174 123.00 178 3.00 758 81.00 3026 128.00 16 4.00 213 82.00 490 129.00 67 5.00 146 84.00 403 130.00 409 6.00 2318 85.00 240 131.00 242 7.00 2616 86.00 208 133.00 8 8.00 795 87.00 6843 135.00 287 9.00 112 88.00 5800 137.00 187 0.00 1355 91.00 1206 139.00 74 1.00 6798 92.00 2965 141.00 966 2.00 6317 93.00 4376 143.00 1098 3.00 4510 94.00 13623 147.00 243 4.00 534 95.00 141888 148.00 437	9,00 6319 76,00 5212 119,00 623 10,00 28368 78,00 769 120,00 198 11,00 7400 79,00 3040 121,00 679 2,00 881 80,00 1174 123,00 178 3,00 758 81,00 3026 128,00 16 4,00 213 82,00 490 129,00 67 5,00 146 84,00 403 130,00 409 6,00 2318 85,00 240 131,00 242 7,00 2616 86,00 208 133,00 8 8,00 795 87,00 6843 135,00 287 9,00 112 88,00 5800 137,00 187 0,00 1355 91,00 1206 139,00 74 1,00 6798 92,00 2965 141,00 966 2,00 6317 93,00 4376 143,00 1098 3,00 4510 94,00 13623 147,00 243 4,00 534 95,00 141888 148,00 437	9.00 6319 76.00 5212 119.00 623 176.00 10.00 28368 78.00 769 120.00 198 177.00 11.00 7400 79.00 3040 121.00 679 178.00 2.00 881 80.00 1174 123.00 178 184.00 3.00 758 81.00 3026 128.00 16 185.00 4.00 213 82.00 490 129.00 67 189.00 5.00 146 84.00 403 130.00 409 191.00 6.00 2318 85.00 240 131.00 242 192.00 7.00 2616 86.00 208 133.00 8 203.00 8.00 795 87.00 6843 135.00 287 207.00 9.00 112 88.00 5800 137.00 187 209.00 0.00 1355 91.00 1206 139.00 74 223.00 1.00 6798 92.00 2965 141.00 966 249.00 2.00 6317 93.00 4376 143.00 1098 253.00 3.00 4510 94.00 13623 147.00 243 260.00 4.00 534 95.00 141888 148.00 437

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40852.d

Bate : 17-MAR-2006 07:52

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076

Operator: VOAMS 8

Column phase: DB-624

Column diameter: 0.53

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40735A BFB Injection Date: 03/07/06

Instrument ID: VOAMS5 BFB Injection Time: 0948

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	=======================================	
50	15.0 - 40.0% of mass 95	19.8
75	30.0 - 80.0% of mass 95	46.2
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.5
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	66.8
175	5.0 - 9.0% of mass 174	5.0 (7.5)1
176	95.0 - 101.0% of mass 174	64.3 (96.3)1
177	5.0 - 9.0% of mass 176	4.3 (6.7)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT ID	LAB SAMPLE No.	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08	ESTD020-R4 ESTD040-R4 ESTD005-R4	ESTD020-R4 ESTD040-R4 ESTD005-R4	E40742 E40745 E40746	03/07/06 03/07/06 03/07/06 03/07/06	1302 1447 1517
10 11 12 13 14 15 16					
18 19 20 21 22					

page 1 of 1

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40735a.d

Date : 07-MAR-2006 09:48

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB066a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40735a.d

Date : 07-MAR-2006 09:48

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB066a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

Data File: e40735a.d

Spectrum: Avg. Scans 60-62 (7.43), Background Scan 56

Location of Maximum: 95.00 Number of points: 94

Y	m/z		Y	m/z		Y	m/z		Y	m/z	
1023	1,00	!	16672	94,00	1	304	65.00	-+- I	2032	36.00	+-
1210	3.00	ı	168960	95.00	ı	199	66.00	ļ	9772	37,00	l
285	7.00	ł	11031	96.00	ı	125	67,00	ì	7997	38,00	ł
531	8.00	1	465	97,00	I	15833	68,00	1	3019	39,00	1
72	9.00	!	99	103,00	1	15407	69,00	1	161	40.00	!
417	5.00	1	928	104.00	1	1705	70.00	1	122	41,00	+- I
254	1.00	1	732	106.00	I	1031	72,00	ı	202	42,00	ı
183	3,00	ı	183	107,00	1	8000	73,00	i	1602	44.00	ı
188	4,00	ı	175	109,00	Ţ	24856	74,00	ı	1428	45.00	ŀ
112904	4,00	1	360	115.00	!	77976	75.00	ı	2996	47.00	İ
8521	5.00	+- I	604	116,00	1	 6876	76.00	-+ 	1239	48.00	+-
108696	-		760	117.00			77.00		7205	49.00	1
7318	7.00	1.	696	118.00			78.00		33384	50.00	!
517	8.00	1	934	119.00	ī	3112	79,00	ı	10330	51,00	ı
471	1.00	L	182	126.00	1	1355	80,00	I	644	52,00	I
300	 3₊00	† :	524	127,00	+- 	3014	81.00	-+ 	155	55.00	+-
9	5.00	1	343	128.00	ı	1438	82.00	ı	2516	56.00	i
774	8.00	1	403	130.00	ı	411	85.00	ı	3620	57.00	i
358	9.00	1	203	131.00	ı	7014	87.00	1	584	58.00	l
726	0.00	1 :	124	133,00	1	7818	88,00	I	104	59,00	ŀ
170	 9.00	+ 1 :	86	134.00	+- 1	 99	89,00	-+- I	. 1729	60.00	+- I
112	3.00		194			737	91.00	ŀ		61,00	ı
	•		360	139.00			92.00	1		62,00	1
		j	480	140.00			93.00	ı	4433	63,00	ı

Data File: /chem/VOAMS5,i/524-R4/03-07-06/07mar06.b/e40735a.d

Date : 07-MAR-2006 09:48

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB066a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40852A BFB Injection Date: 03/17/06

Instrument ID: VOAMS5 BFB Injection Time: 0752

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.0
75	30.0 - 80.0% of mass 95	45.5
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	69.8
175	5.0 - 9.0% of mass 174	5.1 (7.3)1
176	95.0 - 101.0% of mass 174	67.5 (96.7)1
177	5.0 - 9.0% of mass 176	4.3 (6.4)2
İ		
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT ID	LAB SAMPLE No.	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	CLIENT ID ========= ESTD076-R4 1427BS 1427BSD-R4 EV076A				,
19 20 21 22					

page 1 of 1

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40852A BFB Injection Date: 03/17/06

Instrument ID: VOAMS5 BFB Injection Time: 0752

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
===== 50 75 95 96 173 174 175 176 177	15.0 - 40.0% of mass 95 30.0 - 80.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	20.0 45.5 100.0 6.8 0.0 (0.0)1 69.8 5.1 (7.3)1 67.5 (96.7)1 4.3 (6.4)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT ID	LAB SAMPLE No.	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08	ESTD076-R4 EV076A 425LOCK	ESTD076-R4 EV076A 715188	E40858 E40864A E40871A	03/17/06 03/17/06 03/17/06 03/17/06	1130 1433 1802
10 11 12 13 14 15 16 17 18					
19 20 21 22					

page 1 of 1

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40852a.d

Date : 17-MAR-2006 07:52

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

Data File: /ohem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40852a.d

Date : 17-MAR-2006 07:52

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

Data File: e40852a.d

Spectrum: Avg. Scans 60-62 (7.43), Background Scan 55

Location of Maximum: 95.00 Number of points: 102

	m/z	Y		m/z	Y	m/z	Y		m/z	Y	
1	36.00	1720	1	67.00	732	+ 103.00	318	+ 	152.00	39	-+ 1
ı	37.00	8018	1	68.00	13578	1 104.00	606	ı	155.00	264	i
ł	38,00	5948	ļ	69.00	12598	105.00	199	i	157.00	5	ı
ı	39,00	1908	1	70.00	1020	106,00	694	ı	161,00	44	1
1	42.00	198	1	71.00	7	1 111.00	188	!	163.00	45	ı
	44.00	1185	1	72,00	1131	113.00	92	ı	167,00	355	1
1	45,00	1783	1	73,00	6047	116,00	271	ı	169,00	253	t
1	47,00	2683	Į	74.00	19344	117.00	682	ı	174.00	99112	1
1	48.00	934	1	75.00	64576	118.00	765	ŀ	175.00	7256	ı
1	49.00	6319	1	76.00	5212	119.00	623	1	176,00	95808	1
+-	50.00	28368	1	78,00	769	120,00	198	+- 	177,00	6144	-+
1	51,00	7400	1	79.00	3040	121,00	679	ı	178,00	563	ī
J	52,00	881	ī	80.00	1174	123.00	178	ļ	184.00	114	1
ı	53.00	758	ŀ	81.00	3026	128.00	16	ŀ	185,00	180	1
ŀ	54.00	213	ł	82,00	490	129,00	67	ł	189,00	420	I
+-			+-					+-			+
I	55,00	146		84.00		130.00			191.00	93	
ļ	56.00	2318		85.00	240	131.00	242	l		96	1
ı	57.00	2616	ļ	86.00	208	133,00	8	ľ	203,00	439	1
1	58.00	795	İ	87.00	6843 1	135.00	287	ı	207,00	194	1
1	59.00	112	1	88.00	5800	137.00	187	l 	209,00	562	1
ı	60,00	1355	ŀ	91.00	1206	139.00	74 i		223,00	198	ı
ŀ	61.00	6798	I	92,00	2965	141.00	966 1	ì	249.00	172	I
4	62.00	6317	ı	93.00	4375 I	143.00	1098		253,00	95	t
1	63.00	4510	l	94.00	13623 l	147.00	243 1		260,00	217	I
1	64.00	534	1	95.00	141888 J	148.00	437				1
1	66,00	249	1	96,00	9673 1	149,00	205	_			†
+			+-		+ 1		+	_			+

Data File: /ohem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40852a.d

Date : 17-MAR-2006 07:52

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076a

Operator: VOAMS 5

Column phase: DB-624 Column diameter: 0.53

Method Blank Results Summary

VOLATILE METHOD BLANK SUMMARY

EV076

Matrix: WATER Date Analyzed: 03/17/06

Level: DW Time Analyzed: 1433

Lab File ID: E40864 Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
01	1425BS	1425BS	E40860	1233
02	1425BSD	1425BSD	E40861	1303
03				
04				
05 06		 ;		·
07				
08				
09				
10 11			N. M. C. C. C. C. C. C. C. C. C. C. C. C. C.	
12				
13				
14				
15				
16 17				
18				l
19				
20				
21				
22 23				·
24				
25		** **		
26				
27		***************************************		
28 29				
30				
1		l <u></u> l		· 1

COMMENTS:	

page 1 of 1

VOLATILE METHOD BLANK SUMMARY

Matrix: WATER

Date Analyzed: 03/17/06

Level: DW

Time Analyzed: 1433

Lab File ID: E40864

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
01	425LOCK	715188	E40871	1802
02				
03 04				
04 05				
06 07	111111111111111111111111111111111111111			
08				
09				
10 11				
12 13				
13 14				
15				
16				
17 18				
19				
20 21	-			
22				
23				
24 25				
26				
27				
28 29				
30				

COMMENTS:		

page 1 of 1

Client ID: EV076

Site:

Lab Sample No: **EV076** Lab Job No: 1425

Date Sampled: _____ Matrix: WATER Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i Lab File ID: e40864.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result Units: ug/l	Quantitation Limit <u>Units: ug/l</u>
Dichlorodifluoromethane	ND	0.5
Chloromethane	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	0.5
Chloroethane	ND	0.5
Trichlorofluoromethane	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Bromochloromethane	ND	0.5
Chloroform	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
Benzene	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Dibromomethane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
1,3-Dichloropropane	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5

Client ID: EV076 Lab Sample No: EV076 Site: Lab Job No: 1425

Date Sampled:
Date Received:
Date Analyzed: 03/17/06 Matrix: WATER Level: DW

Purge Volume: 25.0 ml GC Column: DB624 Instrument ID: VOAMS5.i Dilution Factor: 1.0

Lab File ID: e40864.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result Units: ug/l	Quantitation Limit <u>Units: ug/l</u>
Xylene (Total)	ND	0.5
Styrene	ND	0.5
Bromoform	ND	0.5
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
Bromobenzene	ND	0.5
1,2,3-Trichloropropane	ND	0.5
n-Propylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
m-Dichlorobenzene	ND	0.5
4-Isopropyltoluene	ND	0.5
p-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
o-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
TBA	ND	50
MTBE	ND	0.5
Freon TF	ND	0.5
p-Ethyltoluene	ND	0.5
p-Diethylbenzene	ND	0.5
1,2,4,5-Tetramethylbenzene	ND	0.5
Isopropanol	ND	100
n-Propanol	ND	250
2-Methylnaphthalene	ND	0.5
Dimethylnaphthalene (total)	ND	0.5

Client ID: EV076

Site:

Lab Sample No: EV076

Lab Job No: 1425

Date Sampled:
Date Received:
Date Analyzed: 03/17/06

GC Column: DB624 Instrument ID: VOAMS5.i Lab File ID: e40864.d

Matrix: WATER Level: DW

Purge Volume: 25.0 ml

Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Vinyl Acetate	ND	0.5
Hexane	ND	0.5
1,4-Dioxane	ND	500
Cyclohexane	ND	1.0
Ethyl Acetate	ND	1.0

Client ID: EV076
Site:

Date Sampled:
Date Received:
Date Analyzed: 03/17/06

GC Column: DB624

Lab Sample No: EV076
Lab Job No: 1425

Matrix: WATER
Level: DW
Purge Volume: 25.0 ml
Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e40864.d

VOLATILE ORGANICS - GC/MS TENTATIVELY IDENTIFIED COMPOUNDS METHOD 524.2

COMPOUND NAME	RT	EST. CONC. ug/l	Q
1NO VOLATILE ORGANIC COMPOUNDS FOUND 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.			
24. 25. 26. 27. 28. 29.			

TOTAL ESTIMATED CONCENTRATION 0.0

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40864.d Report Date: 20-Mar-2006 11:37

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40864.d

Lab Smp Id: EV076

Inj Date : 17-MAR-2006 14:33 Operator : VOAMS 5 Smp Info : EV076 Inst ID: VOAMS5.i

Misc Info :

Comment

: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m : 17-Mar-2006 12:21 lily Quant Type: ISTD Method Meth Date : 17-Mar-2006 12:21 lily Cal Date : 17-MAR-2006 12:01 Cal File: e40859.d QC Sample: BLANK Als bottle: 13

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000 25.00000	Dilution Factor Sample Volume

Cpnd Variable

Local Compound Variable

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	Mass	RT .	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==	=======	=======	======	
* 2 Fluorobenzene	96	8.361	8.325 (1.000)	1377022	5.00000	
\$ 42 4-Bromofluorobenzene (SUR)	95	15.247	15.219 (1.824)	708552	4.77394	4.8
\$ 57 1.2-Dichlorobenzene-d4 (SUR)	152	18.062	18.040 (2.160)	408381	4.65083	4.6

VOLATILE METHOD BLANK SUMMARY

EV076A	
--------	--

Matrix: WATER

Date Analyzed: 03/17/06

Level: DW

Time Analyzed: 1433

Lab File ID: E40864A

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	· · · · · · · · · · · · · · · · · · ·	LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
	===========	=======		========
01	1427BS	1427BS	E40862	1333
02	1427BSD-R4	1427BSD-R4	E40863	1403
03				
04				
05				<u> </u>
06				
07				
08 09			· · · · · · · · · · · · · · · · · · ·	
10				
11				
12			· · · ·	
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				·
26				
27 28			[
28				
30			-	
20				

COMMENTS:		

page 1 of 1

VOLATILE METHOD BLANK SUMMARY

EV076A

Matrix: WATER

Date Analyzed: 03/17/06

Level: DW

Time Analyzed: 1433

Lab File ID: E40864A

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CI TONIII ID	LAB	LAB FILE ID	TIME ANALYZED
	CLIENT ID.	SAMPLE NO		ANALIZED
01	425LOCK	715188	E40871A	1802
02 03				
04 05				
06 07				
08 09				
10 11				
12 13				
14 15				
16 17				
18				
19 20				
21 22 23				
24				
25 26				
27 28				
29 30				

COMMENTS:	
	_

page 1 of 1

Client ID: EV076A Lab Sample No: EV076A

Site: Lab Job No: 1427

Matrix: WATER Level: DW

Date Sampled:
Date Received:
Date Analyzed: 03/17/06
GC Column: DB624
Instrument ID: VOAMS5.i Purge Volume: 25.0 ml Dilution Factor: 1.0

Lab File ID: e40864a.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result Units: ug/l	Quantitation Limit <u>Units: uq/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane 2-Nitr	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	ND	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

Client ID: EV076A Site:

Lab Sample No: EV076A Lab Job No: 1427

Date Sampled: Date Received: Date Analyzed: 03/17/06 GC Column: DB624

Matrix: WATER Level: DW

Instrument ID: VOAMS5.i

Purge Volume: 25.0 ml Dilution Factor: 1.0

Lab File ID: e40864a.d

VOLATILE ORGANICS - GC/MS TENTATIVELY IDENTIFIED COMPOUNDS METHOD 524.2

COMPOUND NAME	RT	EST. CONC. ug/l	Q
1NO VOLATILE ORGANIC COMPOUNDS FOUND2.			
3.			
4.			
5			
~ ·	.		
<u> </u>	-		
· ·	·		
J	· 		ļ ——
10.] ——
12.	·		
13			1
LG.			
15.	.		l
L6.			
b / •	.		l
L8.	<u> </u>		l ——
19. 20.			
			<u> </u>
# *			·
- J -	.		
50.	·		
- · ·	-		
28			
30.			

TOTAL ESTIMATED CONCENTRATION 0.0 Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40864a.d

Report Date: 20-Mar-2006 13:35

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40864a.d Client Smp ID: EV076A Lab Smp Id: EV076A

Inj Date: 17-MAR-2006 14:33 Operator: VOAMS 5 Smp Info: EV076a Inst ID: VOAMS5.i

Misc Info :

Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:34 lily Quant Type: ISTD Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d QC Sample: BLANK Als bottle: 13

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Local Compound Variable Cpnd Variable

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Ç	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	==				
*	2 Fluorobenzene	96	8.361	8.336 (1.000)	1398660	5.00000	
\$	42 4-Bromofluorobenzene (SUR)	95	15.247	15.226 (1.824)	708552	4.38261	4.4
Ś	57 1.2-Dichlorobenzene-d4 (SUR)	152	18.062	18.044 (2.160)	408381	4.27785	4.3

VOLATILE ORGANICS INITIAL CALIBRATION DATA METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/17/06 03/17/06

Heated Purge: (Y/N) N Calibration Time(s): 0823 1201

LAB FILE ID: RRF1: E40859 RRF2: E40853 RRF5: E40855					
RRF20: E4	10856 F	RRF40: E408	857		
COMPOUND	RRF1	RRF2	RRF5	RRF20	RRF40
Dichlorodifluoromethane_		0.412	ľ		į.
		0.294	0.281	0.326	0.287
Chloromethane Vinyl Chloride	0.326	0.301			
Bromomethane	0.322	0.274			
Chloroethane	0.224	0.201	0.187	0.220	0.194
Trichlorofluoromethane	0.628	0.596			
1,1-Dichloroethene	0.464	0.436			
Methylene Chloride	0.245	0.220			
trans-1,2-Dichloroethene	0.337	0.310			
1,1-Dichloroethane	0.622	0.574			
cis-1.2-Dichloroethene	0.342	0.294			
2,2-Dichloropropane	0.522	0.492			
Bromochloromethane	0.126	0.118			
Chloroform	0.560	0.541			
1,1,1-Trichloroethane	0.576	0.529		0.608	
1,1-Dichloropropene	0.517	0.448			
Carbon Tetrachloride	0.521	0.495		0.580	
Benzene	0.907	0.856		0.979	
1,2-Dichloroethane	0.195	0.186			
Transhioroothoro	0.397	0.376			
1,2-Dichloropropane	0.321	0.283			
Dibromomethane	0.147	0.134			
Bromodichloromethane	0.412	0.398		0.498	
cis-1,3-Dichloropropene	0.381	0.343		0.446	
Toluene	0.694	0.635			
trans-1,3-Dichloropropene	0.226	0.223			
1,1,2-Trichloroethane	0.130	0.120			
Tetrachloroethene	0.528	0.456			0.504
1,3-Dichloropropane	0.290	0.244			
Dibromochloromethane	0.274	0.258			
1,2-Dibromoethane	0.211	0.198			
Chlorobenzene	0.796	0.761		0.885	
1,1,1,2-Tetrachloroethane	0.363	0.781		0.393	0.800
	1.459	1.361		1.576	
Ethylbenzene Xylene (Total)	0.566	0.490			0.534
	0.736	0.671			0.534
Styrene Bromoform	0.736	0.120			
Isopropylbenzene	1.622				0.151
1,1,2,2-Tetrachloroethane	0.182	1.463 0.165	1.458 0.168		1.485
	- 0.182	0.165	0.168	0.204	0.181
	.				

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/17/06 03/17/06

Heated Purge: (Y/N) N Calibration Time(s): 0823 1201

LAB FILE ID: RRF1: E408 RRF20: E40		RF2: E4085 RF40: E408		RF5: E40855	•
COMPOUND	RRF1	RRF2	RRF5	RRF20	RRF40
Bromobenzene	0.334	0.301	0.293	0.364	0.331
1,2,3-Trichloropropane	0.047	0.046	0.043	0.051	0.045
n-Propylbenzene	1.823	1.690	1.682	1.953	1.701
	1.110	0.994	0.987	1.135	0.994
2-Chlorotoluene 1,3,5-Trimethylbenzene	1.219	1.102	1.090	1.275	1.110
4-Chlorotoluene	1.186	1.071	1.072	1.272	1.090
tert-Butylbenzene	1.363	1.244	1.209	1.400	1.240
1,2,4-Trimethylbenzene	1.103	1.052		1.220	1.075
sec-Butylbenzene	1.725	1.580	1.540	1.802	1.563
m-Dichlorobenzene	0.636	0.576	0.560	0.685	0.620
4-Isopropyltoluene	1.498	1.379		1.572	1.364
p-Dichlorobenzene	0.627	0.572	0.545	0.660	0.584
n-Butylbenzene	1.377	1.274	1.227	1.422	1.222
o-Dichlorobenzene	0.490	0.440	0.427	0.523	0.469
1,2-Dibromo-3-Chloropropane	0.032	0.026	0.025	0.032	0.030
1,2,4-Trichlorobenzene	0.330	0.284	0.290	0.381	0.357
Hexachlorobutadiene	0.309	0.259	0.260	0.308	0.285
Naphthalene	0.331	0.270	0.269	0.356	0.323
1,2,3-Trichlorobenzene	0.255	0.211	0.211	0.274	0.253
TBA					
MTBE	0.384	0.321	0.324	0.387	0.351
Freon TF	0.607	0.557	0.551	0.657	0.551
p-Ethyltoluene		0.007	3.552		
p-Diethylbenzene					
1,2,4,5-Tetramethylbenzene					
Isopropanol					
n-Propanol					
2-Methylnaphthalene					
Dimethylnaphthalene (total)					
Vinyl Acetate					
Hexane					
1,4-Dioxane					
Cyclohexane					
Ethyl Acetate					
4-Bromofluorobenzene (SUR)	0.532	0.517	0.509	0.612	0.525
1,2-Dichlorobenzene-d4 (SUR)	0.313	0.300	0.298	0.366	0.316
1,2 Diditotobelizelle di (bok)	0.513	0.500	0.230	0.500	0.510

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Calibration Date(s): 03/17/06 03/17/06 Instrument ID: VOAMS5

Calibration Time(s): 0823 1201 Heated Purge: (Y/N) N

	ı	CORPETCIONS	- ODGD
COMPOUND	CIIDIZ	COEFFICENT	%RSD OR R^2
COMPOUND	CURVE	A1	OR R 2
Dichlorodifluoromethane	AVRG	0.43800218	1
Chloromethane	AVRG	0.29669732	
Vinyl Chloride	AVRG	0.23663732	1
Bromomethane	AVRG	0.29686404	ł
Chloroethane	AVRG	0.20534614	1
Trichlorofluoromethane	AVRG	0.61460343	7.9*
1,1-Dichloroethene	AVRG	0.45946281	7.0*
Methylene Chloride	AVRG	0.22705227	7.7*
trans-1,2-Dichloroethene	AVRG	0.32800902	6.6*
1,1-Dichloroethane	AVRG	0.59957707	6.4*
cis-1,2-Dichloroethene	AVRG	0.31824367	7.8*
2,2-Dichloropropane	AVRG	0.50901448	6.3*
Bromochloromethane	AVRG	0.12628554	7.9*
Chloroform	AVRG	0.56148274	6.7*
1,1,1-Trichloroethane	AVRG	0.55189864	7.1*
1,1-Dichloropropene	AVRG	0.48793656	8.1*
Carbon Tetrachloride	AVRG	0.51747427	1
Benzene	AVRG	0.88998088	6.2*
1,2-Dichloroethane	AVRG	0.20249489	9.7*
	AVRG		7.2*
Trichloroethene	AVRG	0.39782110	7.2° 8.5*
	AVRG	0.30975157	8.6*
Dibromomethane Bromodichloromethane	AVRG	0.43267265	9.3*
	[0.43267265	10.7*
cis-1,3-Dichloropropene	AVRG AVRG	0.67125588	6.8*
Toluene trans-1,3-Dichloropropene	AVRG	0.87125588	
	AVRG	0.13140277	9.8*
1,1,2-Trichloroethane	AVRG	0.13140277	8.4*
Tetrachloroethene	AVRG	0.27099835	9.4*
	AVRG	0.27099835	11.3*
Dibromochloromethane	AVRG	0.28463970	8.0*
	AVRG	0.79742786	6.8*
Chlorobenzene 1,1,1,2-Tetrachloroethane	AVRG	0.35525251	7.0*
			6.5*
Ethylbenzene	AVRG AVRG	1.42747429	7.9*
Xylene (Total)	AVRG	0.53869844	7.9° 8.9*
StyreneBromoform	AVRG		14.1*
		0.13599205	6.9*
Isopropylbenzene 1,1,2,2-Tetrachloroethane	AVRG AVRG	0.17996822	8.5*
1,1,2,2-lettachioroethane	DAVA	V. 1 / 2 3 0 0 2 Z	0.5
	l		ll

^{*} Compound with required maximum % RSD value.
** Compound with required minimum RRF value.

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/17/06 03/17/06

Heated Purge: (Y/N) N Calibration Time(s): 0823 1201

		COEFFICENT	%RSD
COMPOUND	CURVE	A1	OR R^2
=======================================	=====	========	
Bromobenzene	AVRG	0.32467867	8.8*
1,2,3-Trichloropropane	AVRG	0.04637684	6.5*
n-Propylbenzene	AVRG	1.76977523	6.6*
2-Chlorotoluene	AVRG	1.04390799	6.9*
1,3,5-Trimethylbenzene	AVRG	1.15930326	7.1*
4-Chlorotoluene	AVRG	1.13855117	7.8*
tert-Butylbenzene	AVRG	1.29116459	6.6*
1,2,4-Trimethylbenzene	AVRG	1.09934663	6.5*
sec-Butylbenzene	AVRG	1.64224269	7.0*
m-Dichlorobenzene	AVRG	0.61537326	8.1*
4-Isopropyltoluene	AVRG	1.43310706	6.7*
p-Dichlorobenzene	AVRG	0.59758541	7.7*
n-Butylbenzene	AVRG	1.30447551	7.0*
o-Dichlorobenzene	AVRG	0.46985964	8.2*
1,2-Dibromo-3-Chloropropane	AVRG	0.02922481	11.6*
1,2,4-Trichlorobenzene	AVRG	0.32867096	12.7*
Hexachlorobutadiene	AVRG	0.28420987	
Naphthalene	AVRG	0.28420987	8.6* 12.5*
1,2,3-Trichlorobenzene			
TBA	AVRG	0.24078718	11.7*
MTBE	AVRG	0 25264717	
Freon TF	AVRG	0.35364717	9.0*
	AVRG	0.58454293	8.0*
p-Ethyltoluene	AVRG		
p-Diethylbenzene	AVRG		
1,2,4,5-Tetramethylbenzene	AVRG		
Isopropanol	AVRG		
n-Propanol	AVRG		
2-Methylnaphthalene	AVRG		
Dimethylnaphthalene (total)_	AVRG		
Vinyl Acetate	AVRG		
Hexane	AVRG		
1,4-Dioxane	AVRG		
Cyclohexane	AVRG		
Ethyl Acetate	AVRG		
	=== =	========	========
4-Bromofluorobenzene (SUR)	AVRG	0.53891999	7.7*
1,2-Dichlorobenzene-d4 (SUR)	AVRG	0.31883362	8.7*

^{*} Compound with required maximum % RSD value.
** Compound with required minimum RRF value.

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40859.d Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40859.d

Lab Smp Id: ESTD001

Inj Date : 17-MAR-2006 12:01

Operator : VOAMS 5 Smp Info : ESTD001 Inst ID: VOAMS5.i

Misc Info : Comment

: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m : 20-Mar-2006 13:30 lily Quant Type: ISTD : 17-MAR-2006 12:01 Cal File: e40859.d Method

Meth Date : 20-Mar-2006 13:30 lily Cal Date : 17-MAR-2006 12:01

Calibration Sample, Level: 1 Als bottle: 8

Dil Factor: 1.00000

Compound Sublist: all.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Local Compound Variable Cpnd Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================		==	mr==== ======	=====	22227F	
1 Dichlorodifluoromethane	85	2.911	2.910 (0.349)	122157	1.00000	1.0.
3 Chloromethane	50	3.177	3.175 (0.380)	80186	1.00000	1.00
4 Vinyl Chloride	62	3.397	3.395 (0.407)	88490	1.00000	1.0
5 Bromomethane	94	3.897	3.880 (0.466)	87275	1.00000	1.1
6 Chloroethane	64	4.058	4.026 (0.486)	60746	1.00000	1.1
7 Trichlorofluoromethane	101	4.483	4.467 (0.53 7)	170474	1.00000	. 1.0
8 1,1-Dichloroethene	61	5.128	5.112 (0.614)	125777	1.00000	1.0
111 Freon TF	101	5.187	5.156 (0.621)	164567	1.00000	. 1.0
9 Methylene Chloride	84	5.715	5.699 (0.684)	66515	1.00000	1.1
110 MTBE	73	6.052	6.022 (0.724)	104318	1.00000	1.1
10 trans-1,2-Dichloroethene	96	6.052	6.036 (0.724)	91340	1.00000	1.0
11 1,1-Dichloroethane	63	6.521	6.491 (0.781)	168884	1.00000	1.0
12 cis-1,2-Dichloroethene	96	7.137	7.122 (0.854)	92690	1.00000	1.1
13 2,2-Dichloropropane	77	7.166	7.136 (0.858)	141529	1.00000	1.0
14 Bromochloromethane	128	7.400	7.371 (0.886)	34082	1.00000	0.99
15 Chloroform	83	7,445	7.430 (0.891)	151895	1.00000	1.00

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40859.d Report Date: 20-Mar-2006 13:30

							AMOUN	TTS .
		QUANT SIG					CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	===				======	======
	16 1,1,1-Trichloroethane	97	7.679		(0.919)	156156	1.00000	1.0
	17 1,1-Dichloropropene	75	7.840	7.826	(0.939)	140207	1.00000	1.0
	18 Carbon Tetrachloride	117	7.870	7.855	(0.942)	141287	1.00000	1.0
	20 1,2-Dichloroethane	62	8.061	8.046	(0.965)	52812	1.00000	0.96
	19 Benzene	78	8.075	8.046	(0.967)	246165	1.00000	1.0
*	2 Fluorobenzene	96	8.354	8.325	(1.000)	1356384	5.00000	
	21 Trichloroethene	95	8.764	8.736	(1.049)	107801	1.00000	1.00
	22 1,2-Dichloropropane	. 63	9.014	9.000	(1.079)	87096	1.00000	1.0
	23 Dibromomethane	93	9.175	9.147	(1.098)	39944	1.00000	1.0
	24 Bromodichloromethane	83	9.322	9.293	(1.116)	111682	1.00000	0.95
	25 cis-1,3-Dichloropropene	75	9.879	9.865	(1.183)	103260	1.00000	0.99
	26 Toluene	92	10.377	10.350	(1.242)	188409	1.00000	1.0
	27 trans-1,3-Dichloropropene	75	10.641	10.599	(1.274)	61177	1.00000	0.91
	28 1,1,2-Trichloroethane	83	10.935	10.907	(1.309)	35231	1.00000	0.99
	30 1,3-Dichloropropane	76	11.228	11.200	(1.344)	78597	1.00000	1.1
	29 Tetrachloroethene	166	11.243	11.230	(1.346)	143377	1.00000	1.0
	31 Dibromochloromethane	129	11.624	11.611	(1.391)	74234	1.00000	0.96
	32 1,2-Dibromoethane	107	11.917	11.875	(1.427)	57225	1.00000	1.00
	33 Chlorobenzene	112	12.870	12.843	(1.541)	215830	1.00000	1.00
	34 1,1,1,2-Tetrachloroethane	131	13.002	12.975	(1.556)	98590	1.00000	1.0
	35 Ethylbenzene	91	13.061	13.048	(1.563)	395927	1.00000	1.0
	36 m+p-Xylene	106	13.325	13.298	(1.595)	316606	2.00000	2.1
	37 o-Xylene	106	14.234	14.207	(1.704)	143682	1.00000	1.0
	39 Styrene	104	14.264	14.236	(1.707)	199645	1.00000	0.99
	40 Bromoform	173	14.630	14.618	(1.751)	33256	1.00000	0.90
	41 Isopropylbenzene	105	14.938	14.926	(1:788)	439988	1.00000	1.0
\$	42 4-Bromofluorobenzene (SUR)	95	15.232	15.219	(1.823)	721473	5.00000	4.9
	43 1,1,2,2-Tetrachloroethane	83	15.422	15.410	(1.846)	49295	1.00000	1.0
	45 1,2,3-Trichloropropane	110	15.555	15.513	(1.862)	12660	1.00000	1.0
	44 Bromobenzene	156	15.540	15.528	(1.860)	90748	1.00000	1.0
	46 n-Propylbenzene	91	15.672	15.660	(1.876)	494585	1.00000	1.0
	47 2-Chlorotoluene	91	15.848	15.836	(1.897)	301187	1.00000	1 - 1
	48 1,3,5-Trimethylbenzene	105	15.966	15.954	(1.911)	330772	1.00000	1.0
	49 4-Chlorotoluene	91	16.025	16.013	(1.918)	321893	1.00000	1.0
	50 tert-Butylbenzene.	119	16.553	16.541	(1.981)	369825	1.00000	1.0
	51 1,2,4-Trimethylbenzene	105	16.641	16.630	(1.992)	299320	1.00000	1.0
	52 sec-Butylbenzene	105	16.949	16.938	(2.029)	468005	1.00000	1.0
	53 m-Dichlorobenzene	146	17.184	17.173	(2.057)	172528	1.00000	1.0
	54 4-Isopropyltoluene	119	17.213	17.202	(2.061)	406250	1.00000	1.0
	55 p-Dichlorobenzene	146	17.346	17.335	(2.076)	170175	1.00000	1.0
	56 n-Butylbenzene	91	18.021	18.010	(2.157)	373588	1.00000	1.0
\$	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.050	18.040	(2.161)	424744	5.00000	4.9
	58 o-Dichlorobenzene	146	18.080	18.084	(2.164)	133020	1.00000	1.0
	59 1,2-Dibromo-3-Chloropropane	75	19.620	19.640	(2.349)	8828	1.00000	1.1
	60 1,2,4-Trichlorobenzene	180	21.366	21.372	(2.558)	89573	1.00000	1.0
	61 Hexachlorobutadiene	225	21.734	21.725	(2.602)	83883	1.00000	1.1
	62 Naphthalene	128	21.939	21.931	(2.626)	89703	1.00000	1.1
	-							

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40859.d Report Date: 20-Mar-2006 13:30

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==		======		======
63 1,2,3-Trichlorobenzene	180	22.512	22.489 (2.695)	69079	1.00000	1.0
M 38 Xvlene (Total)	100			460288	3.00000	3.1

Data

File: /chem/VOAMS5,i/524/03-17-06/17mar06,b/e40859.d

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40853.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40853.d

Lab Smp Id: ESTD002

Inj Date : 17-MAR-2006 08:23

Operator : VOAMS 5 Smp Info : ESTD002 Inst ID: VOAMS5.i

Misc Info : Comment

: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m Method

Quant Type: $\overline{I}S\overline{T}D$ Cal File: e40853.d Meth Date : 20-Mar-2006 13:30 lily Cal Date : 17-MAR-2006 08:23

Calibration Sample, Level: 2 Als bottle: 2

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
	 	
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Local Compound Variable Cpnd Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
		经帐篷花	==	======================================		=====	
1	Dichlorodifluoromethane	85	2.910	2.910 (0.350)	233355	2.00000	1.9
3	Chloromethane	50	3.175	3.175 (0.381)	166349	2.00000	2.0
4	Vinyl Chloride	62	3.395	3.395 (0.408)	170147	2.00000	1.9
5	Bromomethane	94	3.880	3.880 (0.466)	154930	2.00000	1.8
6	Chloroethane	64	4.026	4.026 (0.484)	113826	2.00000	2.0
7	Trichlorofluoromethane	101	4.467	4.467 (0.537)	337174	2.00000	1.9
8	1,1-Dichloroethene	61	5.112	5.112 (0.614)	246540	2.00000	1.9
111	Freon TF	101	5.156	5.156 (0.619)	315365	2.00000	1.9
9	Methylene Chloride	84	5.699	5.699 (0.685)	124239	2.00000	1.9
110	MTBE	73	6.022	6.022 (0.723)	181657	2.00000	1.8
10	trans-1,2-Dichloroethene	96	6.036	6.036 (0.725)	175682	2.00000	1.9
11	1,1-Dichloroethane	63	6.491	6.491 (0.780)	324727	2.00000	1.9
12	cis-1,2-Dichloroethene	96	7.122	7.122 (0.855)	166678	2.00000	1.8
13	2,2-Dichloropropane	77	7.136	7.136 (0.857)	278278	2.00000	1.9
14	Bromochloromethane	128	7.371	7.371 (0.885)	66510	2.00000	1.9
15	Chloroform	83	7.430	7.430 (0.892)	306165	2.00000	1.9

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40853.d Report Date: 20-Mar-2006 13:30

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	* ====================================	====	==		======	=====	======
	16 1,1,1-Trichloroethane	. 97	7.664	7.664 (0.921)	299495	2.00000	1.9
	17 1,1-Dichloropropene	75	7.826	7.826 (0.940)	253623	2.00000	1.8
	18 Carbon Tetrachloride	117	7.855	7.855 (0.944)	280236	2.00000	1.9
	20 1,2-Dichloroethane	62	8.046	8.046 (0.966)	105385	2.00000	1.8
	19 Benzene	78	8.046	8.046 (0.966)	484478	2.00000	1.9
*	2 Fluorobenzene	96	8.325	8.325 (1.000)	1414562	5.00000	
	21 Trichloroethene	95	8.736	8.736 (1.049)	213059	2.00000	1.9
	22 1,2-Dichloropropane	63	9.000	9.000 (1.081)	160133	2.00000	1.8
	23 Dibromomethane	93	9.147	9.147 (1.099)	75666	2.00000	1.8
	24 Bromodichloromethane	83	9.293	9.293 (1.116)	225187	2.00000	1.8
	25 cis-1,3-Dichloropropene	75	9.865	9.865 (1.185)	194023	2.00000	1.8
	26 Toluene	92	10.350	10.350 (1.243)	359450	2.00000	1.9
	27 trans-1,3-Dichloropropene	75	10.599	10.599 (1.273)	126249	2.00000	1.8
	28 1,1,2-Trichloroethane	83	10.907	10.907 (1.310)	68019	2.00000	1.8
	30 1,3-Dichloropropane	76	11.200	11.200 (1.345)	137827	2.00000	1.8
	29 Tetrachloroethene	166	11.230	11.230 (1.349)	257909	2.00000	1.8
	31 Dibromochloromethane	129	11.611	11.611 (1.395)	145875	2.00000	1.8
	32 1,2-Dibromoethane	107	11.875	11.875 (1.426)	112185	2.00000	1.9
	33 Chlorobenzene	112	12.843	12.843 (1.543)	430608	2.00000	1.9
	34 1,1,1,2-Tetrachloroethane	131	12.975	12.975 (1.559)	188746	2.00000	1.9
	35 Ethylbenzene	91	13.048	13.048 (1.567)	770339	2.00000	1.9
	36 m+p-Xylene	106	13.298	13.298 (1.597)	575283	4.00000	3.6
	37 o-Xylene	106	14.207	14.207 (1.707)	257234	2.00000	1.8
	39 Styrene	104	14.236	14.236 (1.710)	379705	2.00000	1.8
	40 Bromoform	173	14.618	14.618 (1.756)	68104	2.00000	1.8
	41 Isopropylbenzene	105	14.926	14.926 (1.793)	827808	2.00000	1.9
s	42 4-Bromofluorobenzene (SUR)	95	15.219	15.219 (1.828)	731958	5.00000	4.8
•	43 1,1,2,2-Tetrachloroethane	83	15.410	15.410 (1.851)	93297	2.00000	1.8
	45 1,2,3-Trichloropropane	110	15.513	15.513 (1.863)	26294	2.00000	2.0
	44 Bromobenzene	156	15.528	15.528 (1.865)	170508	2.00000	1.8
	46 n-Propylbenzene	91	15.660	15.660 (1.881)	956011	2.00000	1.9
	47 2-Chlorotoluene	91	15.836	15.836 (1.902)	562308	2.00000	1.9
	48 1,3,5-Trimethylbenzene	105	15.954	15.954 (1.916)	623609	2.00000	1.9
	49 4-Chlorotoluene	91	16.013	16.013 (1.923)	606233	2.00000	1.9
	50 tert-Butylbenzene	119	16.541	16.541 (1.987)	703746	2.00000	1.9
	51 1,2,4-Trimethylbenzene	105	16.630	16.630 (1.998)	595055	2.00000	1.9
	52 sec-Butylbenzene	105	16.938	16.938 (2.035)	894308	2.00000	1.9
	53 m-Dichlorobenzene	146	17.173	17.173 (2.063)	325733	2.00000	1.9
	54 4-Isopropyltoluene	119	17.202	17.202 (2.066)	780545	2.00000	1.9
	55 p-Dichlorobenzene	146	17.335	17.335 (2.082)	323398	2.00000	1.9
	56 n-Butylbenzene	91	18.010	18.010 (2.163)	721190	2.00000	2.0
ş	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.040	18.040 (2.167)	424142	5.00000	4.7
4	58 o-Dichlorobenzene	146	18.084	18.084 (2.172)	249220	2.00000	1.9
	59 1,2-Dibromo~3-Chloropropane	75	19.640	19.640 (2.359)	14755	2.00000	1.8
	60 1,2,4-Trichlorobenzene	180	21.372	21.372 (2.567)	161002	2.00000	1.7
	61 Hexachlorobutadiene	225	21.725	21.725 (2.610)	146795	2.00000	1.8
	62 Naphthalene	128	21.931		152890	2.00000	1.7
	or additioners	120					

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40853.d Report Date: 20-Mar-2006 13:30

					NUOMA	NTS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)	
	====	==	m===== =====		-	======	
63 1,2,3-Trichlorobenzene	180	22.489	22.489 (2.701)	119402	2.00000	1.8	
M 38 Xvlene (Total)	100			832517	6.00000	5.5	

Purge Volume: Column phase:

Sample Info:

ESTI002 25.0 DB624

ន

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d

Lab Smp Id: ESTD005

Inj Date : 17-MAR-2006 09:54

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD005

Misc Info : Comment :

Method : /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m Meth Date : 20-Mar-2006 13:30 lily Quant Type: ISTD

Cal Date : 17-MAR-2006 09:54 Cal File: e40855.d

Als bottle: 4 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

		•				NUOMA	rs
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	=======================================	====	45			======	******
1	Dichlorodifluoromethane.	85	2.924	2.910 (0.350)	596406	5.00000	4.6
. 3	Chloromethane	50 ·	3.203	3.175 (0.384)	414904	5.00000	4.7
4	Vinyl Chloride	62	3.423	3.395 (0.410)	440318	5.00000	4.7
5	Bromomethane	94	3.907	3.880 (0.468)	413593	5.00000	4.7
6	Chloroethane	64	4.054	4.026 (0.485)	275543	5.00000	4.5
7	Trichlorofluoromethane	101	4.494	4.467 (0.538)	855235	5.00000	. 4. 7
8	1,1-Dichloroethene	61	5.139	5.112 (0.615)	649214	5.00000	4.8
111	Freon TF	101	5.184	5.156 (0.621)	812329	5.00000	4.7
9	Methylene Chloride	84	5.712	5.699 (0.684)	303956	5.00000	4.5
110	MTBE	73	6.049	6.022 (0.724)	478169	5.00000	4.6
10	trans-1,2-Dichloroethene	96	6.049	6.036 (0.724)	458797	5.00000	4.7
11	1,1-Dichloroethane	63	6.518	6.491 (0.780)	831679	5.00000	4.7
12	cis-1,2-Dichloroethene	96	7.134	7.122 (0.854)	439805	5.00000	4.7
13	2,2-Dichloropropane	77	7.149	7.136 (0.856)	718603	5.00000	4.8
14	Bromochloromethane	128	7.398	7.371 (0.886)	173300	5.00000	4.6
15	Chloroform	83	7.442	7.430 (0.891)	780072	5.00000	4.7

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d Report Date: 20-Mar-2006 13:30

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==	-	3#=====	======	======
16 1.1.1-Trichloroethane	97	7.677	7.664 (0.919)	757225	5.00000	4.6
17 1,1-Dichloropropene	75	7.838	7.826 (0.938)	677387	5.00000	4.7
18 Carbon Tetrachloride	117	7.868	7.855 (0.942)	724823	5.00000	4.7
20 1.2-Dichloroethane	62	8.05,9	8.046 (0.965)	281571	5.00000	4.7
19 Benzene	78	8.073	8.046 (0.967)	1240422	5.00000	4.7
* 2 Fluorobenzene	96	8.352	8.325 (1.000)	1475052	5.00000	
21 Trichloroethene	95	8.763	8.736 (1.049)	558741	5.00000	4.8
22 1,2-Dichloropropane	63	9.012	9.000 (1.079)	425174	5.00000	4.6
23 Dibromomethane	93	9.174	9.147 (1.098)	196176	5.00000	4.6
24 Bromodichloromethane	83	9.320	9.293 (1.116)	608725	5.00000	. 4.8
25 cis-1,3-Dichloropropene	75	9.878	9.865 (1.183)	518858	5.00000	4.6
26 Toluene	92	10.361	10.350 (1.241)	921777	5.00000	4.6
27 trans-1,3-Dichloropropene	75	10.626	10.599 (1.272)	332215	5.00000	4.5
28 1,1,2-Trichloroethane	83	10.919	10.907 (1.307)	178524	5.00000	4.6
30 1,3-Dichloropropane	76	11.212	11.200 (1.342)	364818	5.00000	4.6
29 Tetrachloroethene	166	11.242	11.230 (1.346)	688981	5.00000	4.6
31 Dibromochloromethane	129	11.623	11.611 (1.392)	382660	5.00000	4.6
32 1,2-Dibromoethane	107	11.887	11.875 (1.423)	289509	5.00000	4.6
33 Chlorobenzene	112	12.855	12.843 (1.539)	1098757	5.00000	4.7
34 1,1,1,2-Tetrachloroethane	131	12.987	12.975 (1.555)	489384	5.00000	4.7
35 Ethylbenzene	91	13.046	13.048 (1.562)	2007644	5.00000	4.8
36 m+p-Xylene	106	13.310	13.298 (1.594)	1557723	10.0000	9.4
37 o-Xylene	106	14.219	14.207 (1.702)	691682	5.00000	4.7
39 Styrene	104	14.234	14.236 (1.704)	1030622	5.00000	4.7
40 Bromoform	173	14.630	14.618 (1.752)	182925	5.00000	4.6
41 Isopropylbenzene	105	14.923	14.926 (1.787)	2150274	5.00000	4.7
\$ 42 4-Bromofluorobenzene (SUR)	95	15.231	15.219 (1.824)	750332	5.00000	4.7
43 1,1,2,2-Tetrachloroethane	83	15.422	15.410 (1.847)	248363	5.00000	4.7
45 1,2,3-Trichloropropane	110	15.525	15.513 (1.859)	62890	5.00000	4.6
44 Bromobenzene	156	15.525	15.528 (1.859)	431964	5.00000	4.5
46 n-Propylbenzene	91	15.672	15.660 (1.876)	2481384	5.00000	4 - 8
47 2 Chlorotoluene	91	15.834	15.836 (1.896)	1455842	5.00000	4.7
48 1,3,5-Trimethylbenzene	105	15.951	15.954 (1.910)	1607504	5.00000	4.7
49 4-Chlorotoluene	91	16.010	16.013 (1.917)	1581688	5.00000	4.7
50 tert-Butylbenzene	119	16.539	16.541 (1.980)	1782944	5.00000	4.7
51 1,2,4-Trimethylbenzene '	105	16.627	16.630 (1.991)	1543505	5.00000	4.8
52 sec-Butylbenzene	105	16.950	16.938 (2.029)	2271272	5.00000	4.7
53 m-Dichlorobenzene	146	17.185	17.173 (2.058)	825887	5.00000	4.5
54 4-Isopropyltoluene	119	17.200	17.202 (2.059)	1995935	5.00000	4.7
55 p-Dichlorobenzene	146	17.347	17.335 (2.077)	803561	5.00000	4.6
56 n-Butylbenzene	91.	18.008	18.010 (2.156)	1809491	5.00000	4.7
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.037	18.040 (2.160)	439802	5.00000	4.7
58 o-Dichlorobenzene	146	18.081	18.084 (2.165)	629582	5.00000	4.5
59 1,2-Dibromo-3-Chloropropane	75	19.637	19.640 (2.351)	37209	5.00000	4.3
60 1,2,4-Trichlorobenzene	180	21.369	21.372 (2.558)	428451	5.00000	4.4
61 Hexachlorobutadiene	225	21.722	21.725 (2.601)	383062	5.00000	4.6
62 Naphthalene	128	21.928	21.931 (2.625)	396459	5.00000	4.3

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d Report Date: 20-Mar-2006 13:30

					AUQMA	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	===	==	===== =================================			
63 1,2,3-Trichlorobenzene	180	22.501	22.489 (2.694)	311733	5.00000	4.4
M 38 Xvlene (Total)	100			2249405	15.0000	14

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40856.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40856.d Lab Smp Id: ESTD020 Inj Date: 17-MAR-2006 10:25

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD020

Misc Info : Comment

Method : /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m Quant Type: TSTD Meth Date : 20-Mar-2006 13:30 lily

Cal File: e40856.d Cal Date : 17-MAR-2006 10:25

Calibration Sample, Level: 4

Als bottle: 5
Dil Factor: 1.00000
Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

						AMOUN	TŠ
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=====		====	==	======		= = = = = =	======
1	Dichlorodifluoromethane	85	2.925	2.910 (0.351)	2354037	20.0000	23
3	Chloromethane	50	3.203	3.175 (0.384)	1510040	20.0000	22
4	Vinyl Chloride	62	3.423	3.395 (0.411)	1652526	20.0000	22
5	Bromomethane	94	3.922	3.880 (0.470)	1502590	20.0000	22
. 6	Chloroethane	64	4.054	4.026 (0.486)	1022217	20.0000	21
7	Trichlorofluoromethane	101	4.480	4.467 (0.537)	3215240	20.0000	22
8	1,1-Dichloroethene	61	5.125	5.112 (0.615)	2382371	20.0000	22
111	Freon TF	101	5.169	5.156 (0.620)	3047986	20.0000	22
9	Methylene Chloride	84	5.712	5.699 (0.685)	1137319	20.0000	22
110	MTBE	73	6.035	6.022 (0.724)	1795756	20.0000	22
10	trans-1,2-Dichloroethene	96	6.050	6.036 (0.725)	1678725	20.0000	22
11	1,1-Dichloroethane	63	6.505	6.491 (0.780)	3041421	20.0000	22
12	cis-1,2-Dichloroethene	96	7.135	7.122 (0.856)	1610381	20.0000	. 22
13	2,2-Dichloropropane	77	7.150	7.136 (0.857)	2595882	20.0000	22
. 14	Bromochloromethane	128	7.385	7.371 (0.886)	657452	20.0000	22
15	Chloroform	83	7.443	7.430 (0.893)	2897848	20.0000	22

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40856.d Report Date: 20-Mar-2006 13:30

					AUOMA	TS
-	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
EP3	= 2 = 2	==		* ****		======
16 1,1,1-Trichloroethane	97	7.678	7.664 (0.921)	2820876	20.0000	22
17 1,1-Dichloropropene	75	7.840	7.826 (0.940)	2506809	20.0000	22
18 Carbon Tetrachloride	117	7.869	7.855 (0.944)	2688449	20.0000	22
20 l,2-Dichloroethane	62	8.060	8.046 (0.967)	1090038	20.0000	23
19 Benzene	78	8.060	8.046 (0.967)	4539463	20.0000	22
* 2 Fluorobenzene	96	8.339	8.325 (1.000)	1159090	5.00000	(T)
21 Trichloroethene	95	8.750	8.736 (1.049)	2070316	20.0000	22
22 1,2-Dichloropropane , ,	63	9.014	9.000 (1.081)	1614906	20.0000	22
23 Dibromomethane	93	9.161	9.147 (1.099)	75870 5	20.0000	23
24 Bromodichloromethane	83	9.308	9.293 (1.116)	2311025	20.0000	23
25 cis-1,3-Dichloropropene	75	9.865	9.865 (1.183)	2065875	20.0000	23
26 Toluene	92	10.364	10.350 (1.243)	3421115	20.0000	22
27 trans-1,3-Dichloropropene	75	10.614	10.599 (1.273)	1368739	20.0000	24
28 1,1,2-Trichloroethane	83	10.907	10.907 (1.308)	704409	20.0000	23
30 1,3-Dichloropropane	76	11.201	11.200 (1.343)	1399358	20.0000	22
29 Tetrachloroethene	166	11.230	11.230 (1.347)	2586078	20.0000	22
31 Dibromochloromethane	129	11.627	11.611 (1.394)	1549282	20.0000	23
32 1,2-Dibromoethane	107	11.891	11.875 (1.426)	1105544	20.0000	22
33 Chlorobenzene	112	12.844	12.843 (1.540)	4104769	20.0000	22
34 1,1,1,2-Tetrachloroethane	131	12.991	12.975 (1.558)	1820794	20.0000	22
35 Ethylbenzene	91	13.035	13.048 (1.563)	7306138	20.0000	22
36 m+p-Xylene	106.	13.300	13.298 (1.595)	5717102	40.0000	44
37 o-Xylene	106	14.224	14.207 (1.706)	2561714	20.0000	22
39 Styrene	104	14.239	14.236 (1.707)	3902407	20.0000	23
40 Bromoform	173	14.620	14.618 (1.753)	752046	20.0000	24
41 Isopropylbenzene	105	14.928	14.926 (1.790)	7846420	20.0000	22
\$ 42 4-Bromofluorobenzene (SUR)	95	15.222	15.219 (1.825)	708974	5.00000	5.7
43 1,1,2,2-Tetrachloroethane	83	15.413	15.410 (1.848)	946161	20.0000	23
45 1,2,3-Trichloropropane	110	15.531	15.513 (1.862)	236389	20.0000	22
44 Bromobenzene	156		15.528 (1.861)	1687958	20.0000	22
46 n-Propylbenzene	91	15.663	15.660 (1.878)	9053323	20.0000	22
47 2-Chlorotoluene	91	15.840	15.836 (1.899)	5260552	20.0000	22
48 1,3,5-Trimethylbenzene	105	15.957	15.954 (1.914)	5910690	20.0000	22
49 4-Chlorotoluene	91	16.016	16.013 (1.921)	5899409	20.0000	22
50 tert-Butylbenzene	119	16.545	16.541 (1.984)	6491966	20.0000	22
51 1,2,4-Trimethylbenzene	105	16.619	16.630 (1.993)	5657661	20.0000	22
52 sec-Butylbenzene	105	16.942	16.938 (2.032)	8356067	20.0000	22
53 m-Dichlorobenzene	. 146	17.178	17.173 (2.060)	3178010	20.0000	22
54 4-Isopropyltoluene	119	17.207	17.202 (2.063)	7286534	20.0000	22
55 p-Dichlorobenzene	146	17.207	17.335 (2.079)	3061535	20.0000	22
56 n-Butylbenzene	91	18.001	18.010 (2.159)	6593455	20.0000	22
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.045	18.040 (2.164)	424725	5.00000	5.7
58 o-Dichlorobenzene		18.045		2424393	20.0000	22
59 1,2-Dibromo-3-Chloropropane	146				20.0000	22
	75	19.631	19.640 (2.354) 21.372 (2.560)	148977		22
60 1,2,4-Trichlorobenzene 61 Hexachlorobutadiene	180	2J348 21.716		1766650	20.0000	
	225		21.725 (2.604)	1426331	20.0000	22
62 Naphthalene	128	21.923	21.931 (2.629)	1649043	20.0000	23

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40856.d Report Date: 20-Mar-2006 13:30

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	==		=======	3=====	======
63 1,2,3-Trichlorobenzene	180	22.481	22.489 (2.696)	1268845	20.0000	23
M 38 Xylene (Total)	100			8278816	60.0000	66

QC Flag Legend

T - Target compound detected outside RT window.

Data File: /chem/VOAMS5.1/524/03-17-06/17mar06.b/e40857.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40857.d Lab Smp Id: ESTD040 Inj Date: 17-MAR-2006 10:55 Operator: VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD040

Misc Info :

Comment

: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524 2 05.m Method Meth Date : 20-Mar-2006 13:30 lily Quant Type: ISTD

Cal Date : 17-MAR-2006 10:55 Cal File: e40857.d

Als bottle: 6 Calibration Sample, Level: 5

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
	4 00000	
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
====		====	2 42	3=====================================		, ======	======
1	Dichlorodifluoromethane	85	2.925	2.910 (0.351)	4285054	40.0000	38.
3	Chloromethane	50	3.218	3.175 (0.386)	2961037	40.0000	39
4	Vinyl Chloride	62	.3.424	3.395 (0.410)	3217982	40.0000	39
5	Bromomethane	94	3.923	3.880 (0.470)	2933983	40.0000	38.
6	Chloroethane	64	4.055	4.026 (0.486)	2005700	40.0000	38
7	Trichlorofluoromethane	101	4.495	4.467 (0.539)	5938206	40.0000	. 37
8	1,1-Dichloroethene	61	5.126	5.112 (0.615)	4581690	40.0000	39
111	Freon TF	101	5.170	5.156 (0.620)	5682052	40.0000	38
9	Methylene Chloride	84	5.713	5.699 (0.685)	2261351	40.0000	39
110	MTBE	73	6.036	6.022 (0.724)	3623799	40.0000	40
10	trans-1,2-Dichloroethene	96	б.050	6.036 (0.725)	3299600	40.0000	39
11	1,1-Dichloroethane	63	6.505	6.491 (0.780)	6002058	40.0000	39
12	cis-1,2-Dichloroethene	96	7.136	7.122 (0.856)	3193577	40.0000	39
13	2,2-Dichloropropane	77	7.151	7.136 (0.857)	4999717	40.0000	38
14	Bromochloromethane	128	7.385	7.371 (0.886)	1330794	40.0000	41(A)
15	Chloroform	83	7.444	7.430 (0.893)	5701887	40.0000	39

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40857.d Report Date: 20-Mar-2006 13:30

					AMOUN	TS
	OUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT'	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==	======================================	======	##=====	355====
16 1,1,1-Trichloroethane	97	7.679	7.664 (0.921)	5498084	40.0000	39
17 1,1 Dichloropropene	75	7.841	7.826 (0.940)	4898698	40.0000	39
18 Carbon Tetrachloride	117	7.870	7.855 (0.944)	5160172	40.0000	39 .
20 1,2-Dichloroethane	62	8.061	8.046 (0.967)	2121219	40.0000	41(A)
19 Benzene	78	8.061	8.046 (0.967)	8939014	40.0000	39
* 2 Fluorobenzene	96	8.340	8.325 (1.000)	1289968	5.00000	(T)
21 Trichloroethene	95	8.751	8.736 (1.049)	4023076	40.0000	39
22 1,2-Dichloropropane	63	9.015	9.000 (1.081)	3179859	40.0000	40
23 Dibromomethane	93	9,162	9.147 (1.099)	1482566	40.0000	40
24 Bromodichloromethane	83	9.309	9.293 (1.116)	4567063	40.0000	41(A)
25 cis-1,3-Dichloropropene	75	9.867	9.865 (1.183)	4129963	40.0000	42(A)
26 Toluene	92	10.369	10.350 (1.243)	6849066	40.0000	40
27 trans-1,3-Dichloropropene	75	10.605	10.599 (1.272)	2798352	40.0000	44(A)
28 1,1,2-Trichloroethane	83	10.915	10.907 (1.309)	1382539	40.0000	41(A)
30 1,3-Dichloropropane	76	11.209	11.200 (1.344)	2812417	40.0000	40(A)
29 Tetrachloroethene	166	11.239	11.230 (1.348)	5201767	40.0000	40(A)
31 Dibromochloromethane	129	11.624	11.611 (1.394)	3076954	40.0000	42 (A)
32 1,2-Dibromoethane	107	11.891	11.875 (1.426)	2213421	40.0000	40(A)
33 Chlorobenzene	112	12.849	12.843 (1.541)	8258555	40.0000	40(A)
34 1,1,1,2-Tetrachloroethane	131	12.982	12.975 (1.557)	3661049	40.0000	40.
35 Ethylbenzene	91	13.042	13.048 (1.564)	14236407	40.0000	39
36 m+p-Xylene	106	13.309	13.298 (1.596)	11442454	80.0000	79
37 o-Xylene	106	14.224	14.207 (1.706)	5087727	40.0000	39
39 Styrene	104	14.239	14.236 (1.707)	7883294	40.0000	41(A)
40 Bromoform	173	14.624	14.618 (1.753)	1556099	40.0000	44 (A)
41 Isopropylbenzene	105	14.934	14.926 (1.791)	15328292	40.0000	38
\$ 42 4-Bromofluorobenzene (SUR)	95	15.228	15.219 (1.826)	677104	5.00000	4.9
43 1,1,2,2-Tetrachloroethane	83	15.419	15.410 (1.849)	1865704	40.0000	40(A)
45 1,2,3-Trichloropropane	110	15.522	15.513 (1.861)	465669	40.0000	39
44 Bromobenzene	156	15.522	15,528 (1.861)	3411822	40.0000	41(A)
46 n-Propylbenzene	91	15.670	15.660 (1.879)	17555939	40.0000	38
46 n-Propyrbenzene 47 2.Chlorotoluene	91	15.831	15.836 (1.898)	10256708	40.0000	38
48 1.3.5-Trimethylbenzene	105	15.964	15.954 (1.914)	11459317	40.0000	38
49 4-Chlorotoluene	91	16.008	16.013 (1.919)	11248939	40.0000	38
50 tert-Butylbenzene	119	16.537	16.541 (1.983)	12794759	40.0000	38
51 1,2,4-Trimethylbenzene	105	16,626	16.630 (1.993)	11093837	40.0000	39
52 sec-Butylbenzene	105	16.949	16.938 (2.032)	16133884	40.0000	38
53 m-Dichlorobenzene	146	17.170	17.173 (2.059)	6396649	40.0000	40(A)
54 4-Isopropyltoluene	119	17.199	17.202 (2.062)	14073762	40.0000	38
55 p-Dichlorobenzene	146	17.332	17.335 (2.078)	6026367	40.0000	39
56 n-Butylbenzene	91	18.008	18.010 (2.159)	12608660	40.0000	37
- · · · · · · · · · · · · · · · · · · ·	152	18.037	18.040 (2.163)	408396	5.00000	5 / 0
\$ 57 1,2-Dichlorobenzene-d4 (SUR) 58 o-Dichlorobenzene	146	18.081	18.084 (2.168)	4837556	40.0000	40
. 59 1,2-Dibromo-3-Chloropropane	75	19.624	19.640 (2.353)	311107	40.0000	41(A)
60 1,2,4-Trichlorobenzene	180	21.356	21.372 (2.561)	3685315	40.0000	43 (A)
61 Hexachlorobutadiene	225	21.724	21.725 (2.605)	2941790	40.0000	40(A)
•	128	21.916		3331923	40.0000	42 (A)
62 Naphthalene	120	A. I. J. 10	21.731 (2.020)			/

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40857.d Report Date: 20-Mar-2006 13:30

					AMOUN	TS	
	QUANT SIG			4	CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)	
=======	I	==	======	=======		4 2 3 4 4 4 4	
63 1,2,3-Trichlorobenzene	180	22.490	22.489 (2.697)	2613572	40.0000	42 (A)	
M 38 Xylene (Total)	100			16530181	120.000	120	

QC Flag Legend

- T Target compound detected outside RT window.
 A Target compound detected but, quantitated amount exceeded maximum amount.

VOLATILE ORGANICS INITIAL CALIBRATION DATA METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/07/06 03/07/06

Heated Purge: (Y/N) N Calibration Time(s): 1302 1517

LAB FILE ID: RRF20: E40742 RRF5: E40746 RRF40: E40745 COMPOUND RRF5 RRF20 RRF40 _______ 0.008 0.010 0.008 Acetone 2-Butanone 0.025 0.024 0.023 4-Methyl-2-pentanone____ 0.055 0.071 0.068 0.043 0.040 0.041 2-Hexanone Carbon Disulfide 0.874 0.832 0.810 0.113 0.116 0.102 Diethyl Ether 0.705 0.682 0.635 Iodomethane 0.185 0.190 0.182 Allyl Chloride Acrylonitrile 0.012 0.012 0.011 0.004 0.004 Propionitrile -0.004 0.068 0.073 0.071 Methyl Acrylate 0.019 0.020 Methacrylonitrile 0.020 Tetrahydrofuran 0.005 0.005 0.004 1-Chlorobutane 0.810 0.772 0.744 Methyl Methacrylate 0.050 0.065 0.066 2-Nitropropane 0.020 0.020 0.018 Chloroacetonitrile 0.002 0.001 0.001 1,1-Dichloropropanone 0.048 0.054 0.047 Ethyl Methacrylate 0.111 0.133 0.135 trans-1,4-Dichloro-2-butene 0.024 0.027 0.027 Pentachloroethane 0.238 0.229 0.222 Hexachloroethane 0.541 0.531 0.517 Nitrobenzene 0.001 0.001 0.001

0.584

0.344

0.574

0.333

0.575

0.346

1,2-Dichlorobenzene-d4 (SUR)

4-Bromofluorobenzene (SUR)

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/07/06 03/07/06

Heated Purge: (Y/N) N Calibration Time(s): 1302 1517

COMPOUND	1		%RSD
	CURVE	A1	OR R^2
=======================================	=====		
Acetone	AVRG	0.00887719	9.4*
2-Butanone	AVRG	0.02418178	4.8*
4-Methyl-2-pentanone	AVRG	0.06444072	13.2*
2-Hexanone	AVRG	0.04104165	3.7*
Carbon Disulfide	AVRG	0.83856296	3.8*
Diethyl Ether	AVRG	0.11034491	6.7*
Iodomethane	AVRG	0.67399729	5.2*
Allyl Chloride	AVRG	0.18571462	2.2*
Acrylonitrile	AVRG	0.01177280	3.1*
Propionitrile	AVRG	0.00423786	2.3*
Methyl Acrylate	AVRG	0.07063314	4.0*
Methacrylonitrile	AVRG	0.01946676	2.0*
Tetrahydrofuran	AVRG	0.00477792	15.9*
1-Chlorobutane	AVRG	0.77567292	4.2*
Methyl Methacrylate	AVRG	0.06041958	15.0*
2-Nitropropane	AVRG	0.01922285	3.0*
Chloroacetonitrile	AVRG	0.00126927	17.9*
1,1-Dichloropropanone	AVRG	0.04990178	7.5*
Ethyl Methacrylate	AVRG	0.12645205	10.5*
trans-1,4-Dichloro-2-butene	AVRG	0.02592686	7.7*
Pentachloroethane -	AVRG	0.22955947	3.6*
Hexachloroethane	AVRG	0.52970714	2.2*
Nitrobenzene	AVRG	0.00119679	16.1*
=======================================	=====		=======
4-Bromofluorobenzene (SUR)	AVRG	0.57795906	1.0*
1,2-Dichlorobenzene-d4 (SUR)	AVRG	0.34126986	2.0*

^{*} Compound with required maximum % RSD value.
** Compound with required minimum RRF value.

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40746.d

Report Date: 20-Mar-2006 13:32

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40746.d

Lab Smp Id: ESTD005-R4

Inj Date : 07-MAR-2006 15:17 Operator : VOAMS 5 Smp Info : ESTD005-R4 Inst ID: VOAMS5.i

Misc Info : Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:32 lily Quant Type: ISTD Quant Type: ISTD

Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d

Als bottle: 11 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000 25.00000	Dilution Factor Sample Volume

Cpnd Variable Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
EEEEE	□ = =	==	130KAR CRESS		* ==#===	
125 Diethyl Ether	59	4.796	4.801 (0.576)	146299	5.00000	5.3
113 Acetone	43	5.211	5.181 (0.625)	10569	5.00000	4.7
126 Iodomethane	142	5.329	5.328 (0.639)	887584	5.00000	5.2
120 Carbon Disulfide	76	5.418	5.431 (0.650)	1100330	5.00000	5.2
127 Allyl Chloride	76	5.564	5.563 (0.668)	232862	5.00000	5.0
128 Acrylonitrile	52	5.990	5.973 (0.719)	152787	50.0000	52
114 2-Butanone	43	7.147	7.131 (0.858)	32094	5.00000	5.3
129 Propionitrile	54	7.191	7.175 (0.863)	51936	50.0000	49
130 Methyl Acrylate	55	7.220	7.219 (0.866)	85155	5.00000	4.8
131 Methacrylonitrile	67	7.352	7.336 (0.882)	24737	5.00000	5.0
132 Tetrahydrofuran	71	7.440	7.439 (0.893)	4948	5.00000	4.1
133 1-Chlorobutane	56	7.748	7.747 (0.930)	1020498	5.00000	5.2
* 2 Fluorobenzene	96	8.334	8.333 (1.000)	1259607	5.00000	
134 Methyl Methacrylate	69	9.052	9.052 (1.086)	62955	5.00000	4.1
136 Chloroacetonitrile	48	9.580	9.535 (1.149)	19271	50.0000	60
135 2-Nitropropane	43	9.551	9.550 (1.146)	247029	50.0000	51

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40746.d Report Date: 20-Mar-2006 13:32

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	Mass	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	Z===	==		=======		
115 4-Methyl-2-pentanone	43	10.020	10.019 (1.202)	69000	5.00000	4.2
137 1,1-Dichloropropanone	43	10.122	10.107 (1.215)	60458	5.00000	4.8
138 Ethyl Methacrylate	69	10.679	10.664 (1.281)	140079	5.00000	4.4
119 2-Hexanone	43	11.295	11-265 (1.355)	53829	5.00000	5.2(M)
\$ 42 4-Bromofluorobenzene (SUR)	95	15.221	15.221 (1.826)	724300	5.00000	5.0
139 trans-1,4-Dichloro-2-butene	53	15.529	15.529 (1.863)	29826	5.00000	4.6
140 Pentachloroethane	167	16.570	16.570 (1.988)	299722	5.00000	5.2
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.022	18.023 (2.162)	436212	5.00000	5.1
141 Hexachloroethane	117	18.609	18.610 (2.233)	681475	5.00000	5.1
142 Nitrobenzene	51	20.047	20.033 (2.405)	17685	50,0000	59

QC Flag Legend

M - Compound response manually integrated.

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40742.d

Report Date: 20-Mar-2006 13:32

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40742.d

Lab Smp Id: ESTD020-R4

Inj Date : 07-MAR-2006 13:02

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD020-R4

Misc Info :

Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:32 lily Quant Type: ISTD Cal Date : 07-MAR-2006 13:02 Cal File: e40742.d

Calibration Sample, Level: 4

Als bottle: 7
Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000	Dilution Factor Sample Volume

Cpnd Variable

Local Compound Variable

					MUOMA	T\$
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	F-4			=======	======
125 Diethyl Ether	59	4.801	4.801 (0.576)	559112	20.0000	20
113 Acetone	43	5.181	5.181 (0.622)	48732	20.0000	22
126 Iodomethane	142	5.328	5.328 (0.639)	3377615	20.0000	20
120 Carbon Disulfide	76	5.431	5.431 (0.652)	4121870	20.0000	20
127 Allyl Chloride	76	5.563	5.563 (0.668)	941992	20.0000	2.0
128 Acrylonitrile	52	5.973	5.973 (0.717)	583420	200.000	200
114 2-Butanone	43	7.131	7.131 (0.856)	117891	20.0000	20
129 Propionitrile	54	7.175	7.175 (0.861)	212910	200.000	200
130 Methyl Acrylate	55	7.219	7.219 (0.866)	362377	20.0000	21
131 Methacrylonitrile	67	7.336	7.336 (0.880)	94171	20.0000	20
132 Tetrahydrofuran	71	7.439	7.439 (0.893)	26731	20.0000	22
133 1-Chlorobutane	56	7.747	7.747 (0.930)	3825969	20.0000	20
* 2 Fluorobenzene	96	8.333	8.333 (1.000)	1238145	5.00000	
134 Methyl Methacrylate	69	9.052	9.052 (1.086)	324326	20.0000	22
136 Chloroacetonitrile	48	9.535	9.535 (1.144)	57776	200.000	180
135 2-Nitropropane	43	9.550	9.550 (1.146)	965972	200.000	200

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40742.d Report Date: 20-Mar-2006 13:32

							AMOUN	TS
			QUANT SIG				CAL-AMT	ON-COL
C	ompo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
-			====	==	==			
	115	4-Methyl-2-pentanone	43	10.019	10.019 (1.202)	350891	20.0000	22
	137	1,1-Dichloropropanone	43	10.107	10.107 (1.213)	268628	20.0000	22
	138	Ethyl Methacrylate	69	10.664	10.664 (1.280)	657049	20.0000	21
	119	2~Hexanone	43	11.265	11.265 (1.352)	196754	20.0000	19
ş	42	4-Bromofluorobenzene (SUR)	95	15.221	15.221 (1.826)	723519	5.00000	5.0
	139	trans-1,4-Dichloro-2-butene	. 53	15.529	15.529 (1.863)	136028	20.0000	21
	140	Pentachloroethane	167	16.570	16.570 (1.988)	1135177	20.0000	20
\$	57	1,2-Dichlorobenzene-d4 (SUR)	152	18.023	18.023 (2.163)	425960	5.00000	5.0
	141	Hexachloroethane	117	18.610	18.610 (2.233)	2628878	20.0000	20
	142	Mitrobenzene	51	20 033	20 033 (2 404)	57568	200 000	190

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40745.d

Report Date: 20-Mar-2006 13:32

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40745.d

Lab Smp Id: ESTD040-R4

Inj Date : 07-MAR-2006 14:47

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD040-R4

Misc Info: Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:32 lily Quant Type: ISTD Cal Date : 07-MAR-2006 14:47 Cal File: e40745.d Als bottle: 10 Calibration Sample, Lev

Calibration Sample, Level: 5

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000 25.00000	Dilution Factor Sample Volume

Cpnd Variable Local Compound Variable

							AMOUN	TS
	Q	UANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT R	EL RT	RESPONSE	(ug/L)	(ug/L)
=======================================		====				5 # 2 2 2 E E E E	======	
125 Diethyl Ether		59	4.772	4.801 (0.574)	1030995	40.0000	37
113 Acetone		43	5.168	5.181 (0.621)	84921	40.0000	38
T26 Iodomethane		142	5.300	5,328 (0.637)	6422289	40.0000	38
120 Carbon Disulfide		76	5.403	5.431 (0.649)	8186407	40.0000	39
127 Allyl Chloride		76	5.535	5.563 (0.665)	1840443	40.0000	39
128 Acrylonitrile		52	5.945	5.973 (0.715)	1153207	400.000	390
114 2-Butanone		43	7.103	7.131 (0.854)	235139	40.0000	38
129 Propionitrile		54	7.162	7.175 (0.861)	433789	400.000	400(A)
130 Methyl Acrylate		55	7.191	7.219 (0.864)	718958	40.0000	40(A)
131 Methacrylonitrile		67	7.323	7.336 (0	0.880)	199609	40.0000	40(A)
132 Tetrahydrofuran	i	71	7.411	7.439 (0	0.891)	50624	40.0000	42 (A)
133 1-Chlorobutane		56	7.734	7.747 (0	0.929)	7523862	40.0000	38
* 2 Fluorobenzene		96	8.320	8.333 (1	1.000)	1263535	5.00000	
134 Methyl Methacrylate		69	9.024	9.052 (]	1.085)	665050	40.0000	44 (A)
136 Chloroacetonitrile		48	9.508	9.535 (1	1.143)	112334	400.000	350
135 2-Nitropropane		43	9.523	9.550 (1	1.145)	1875343	400.000	390

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40745.d Report Date: 20-Mar-2006 13:32

						TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==				======
115 4-Methyl-2-pentanone	43	9.992	10.019 (1.201)	684260	40.0000	42 (A)
137 1,1-Dichloropropanone	43	10.080	10.107 (1.212)	479818	40.0000	38
138 Ethyl Methacrylate	69	10.638	10.664 (1.278)	1369466	40.0000	43 (A)
119 2-Hexanone	43.	11.239	11.265 (1.351)	411029	40.0000	40
\$ 42 4-Bromofluorobenzene (SUR)	95	15.210	15.221 (1.828)	725900	5.00000	5 - 0
139 trans-1,4-Dichloro-2-butene	53	15.504	15.529 (1.863)	269241	40.0000	41(A)
140 Pentachloroethane	167	16.560	16.570 (1.990)	2239190	40.0000	38
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.013	18.023 (2.165)	421352	5.00000	4.9
141 Hexachloroethane	117	18.601	18.610 (2.236)	5228909	40.0000	39
142 Nitrobenzene	51	20.024	20.033 (2.407)	103505	400.000	340

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40745.d

VOLATILE ORGANICS CONTINUING CALIBRATION CHECK METHOD 524.2

Instrument ID: VOAMS5 Calibration Date: 03/17/06 Time: 1130

Heated Purge: (Y/N) N Init. Calib. Times: 1302 1517

COMPOUND	RRF	RRF20	MIN RRF	%D	MAX %D
	=======	=======	=======		====
Acetone	0.009			-11.1	
2-Butanone	0.024			-16.7	
4-Methyl-2-pentanone	0.065			-13.8	
2-Hexanone	0.041	ľ		ľ	30.0
Carbon Disulfide	0.839				30.0
Diethyl Ether	0.110				30.0
Iodomethane	0.674	•			30.0
Allyl Chloride	0.186				30.0
Acrylonitrile	0.012				30.0
Propionitrile	0.004			-25.0	
Methyl Acrylate	0.071				30.0
Methacrylonitrile	0.020	0.021		B	30.0
Tetrahydrofuran	0.005	0.005			30.0
1-Chlorobutane	0.775	0.666			40.0
Methyl Methacrylate	0.060	0.078		-30.0	
2-Nitropropane	0.019	0.021		-10.5	
Chloroacetonitrile	0.001	0.002		-100.0	30.0
1,1-Dichloropropanone	0.050	0.062		-24.0	30.0
Ethyl Methacrylate	0.126	0.157		-24.6	30.0
trans-1,4-Dichloro-2-butene	0.026	0.030		-15.4	30.0
Pentachloroethane	0.230	0.235		-2.2	30.0
Hexachloroethane	0.530			8.3	30.0
Nitrobenzene	0.001	0.002		-100.0	
	=======	=======	======	=====	
4-Bromofluorobenzene (SUR)	0.578	0.519		10.2	30.0
1,2-Dichlorobenzene-d4 (SUR)	0.341	0.319		6.4	30.0

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40858.d

Report Date: 20-Mar-2006 13:34

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40858.d

Lab Smp Id: ESTD076-R4

Inj Date : 17-MAR-2006 11:30

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD076-R4

Misc Info :

Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4_04.m Meth_Date : 20-Mar-2006 13:34 lily Quant Type: ISTD Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d

Als bottle: 7 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

	N-COL ug/L)
Compounds MASS RT EXP RT REL RT RESPONSE (ug/L)	
	20
125 Diethyl Ether 59 4.787 4.787 (0.574) 564195 20.0000	
113 Acetone 43 5.168 5.168 (0.620) 50046 20.0000	22
126 Iodomethane 142 5.315 5.315 (0.638) 3184041 20.0000	18
120 Carbon Disulfide 76 5.418 5.418 (0.650) 3796479 20.0000	18
127 Allyl Chloride 76 5.550 5.550 (0.666) 887525 20.0000	19
128 Acrylonitrile 52 5.975 5.975 (0.717) 655447 200.000	220
114 2-Butanone 43 7.119 7.119 (0.854) 145859 20.0000	24
129 Propionitrile 54 7.177 7.177 (0.861) 246006 200.000	230
130 Methyl Acrylate 55 7.207 (0.865) 398980 20.0000	22
131 Methacrylonitrile 67 7.339 7.339 (0.880) 109105 20.0000	22
132 Tetrahydrofuran	22
133 1-Chlorobutane 56 7.749 7.749 (0.930) 3408415 20.0000	17
* 2 Fluorobenzene 96 8.336 (1.000) 1279227 5.00000	
134 Methyl Methacrylate 69 9.054 9.054 (1.086) 398986 20.0000	26
136 Chloroacetonitrile 48 9.538 9.538 (1.144) 81338 200.000	250
135 2-Nitropropane 43 9.553 9.553 (1.146) 1091654 200.000	220

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40858.d Report Date: 20-Mar-2006 13:34

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
±=====================================	====	==				
115 4-Methyl-2-pentanone	43	10.007	10.007 (1.201)	379174	20.0000	23
137 1,1-Dichloropropanone	43	10.110	10.110 (1.213)	316748	20.0000	25
138 Ethyl Methacrylate	69	10.667	10.667 (1.280)	805149	20.0000	25
119 2-Hexanone	43	11.269	11.269 (1.352)	231493	20.0000	22
\$ 42 4-Bromofluorobenzene (SUR)	95	15.226	15.226 (1.827)	663972	5.00000	4 - 5
139 trans-1,4-Dichloro-2-butene	53	15.519	15.519 (1.862)	152225	20.0000	23
140 Pentachloroethane	167	16.576	16.576 (1.989)	1203512	20.0000	20
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.044	18.044 (2.165)	408683	5.00000	4.7
141 Hexachloroethane	117	18.617	18.617 (2.233)	2484499	20.0000	18
142 Nitrobenzene	51	20.041	20.041 (2.404)	77125	200.000	250

Surrogate Compound Recovery Summary

VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: 1425

	LAB	S1	S2	S3	OTHER	TOT
	SAMPLE NO.	#	52 #	33 #	OTHER	OUT
	=========	= =====	======	=====		===
01	1425BS	97	96			0
02	1425BSD	114	114			0
03	EV076	95	93			0
04					<u> </u>	·
05						
06				·		
07						
08			l			
09			İ			·
10						
11						
12		_ [l ———			ll
13 14		_				
15		_				
16		_				l
17		_				
18		_				
19						
20						
21		_				
22		_				
23						
24		-				
24 25						
26						
27				*****		-
28						
29						
30						
		-·	· ——— ·			

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: 0531

	LAB	Sl	S2	S3	OTHER	TOT
	SAMPLE NO.	#	#	#	İ	OUT
		======	======	=====	=====	===
01	EV076A	88	86			0
02	EV076	95	93			0
03 04	715188 715188	93 86	90 83			0
05	713100	86	0.3			انا
05						
07					[i	
08						
09						
10					· · · · · · · · · · · · · · · · · · ·	
11						
12						
13						
14						
15						!
16	****					
17 18						
19						
20						
21						
22						
23						
24			. ———	 -		
25			·			
26						
27						. —
28						
29						
30						

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: 1427

	T 3 D				LABITED	l mom l
	LAB	S1	S2	S3 ,,	OTHER	TOT
	SAMPLE NO.	#	#	#		OUT
0.1		======	======	=====	=====	===
01	1427BS	88	85			0
02	1427BSD-R4	88	86	·		0
03	EV076A	88	86	<u> </u>		0
04						
05						
06						
07	<u> </u>					
08				<u> </u>		
09						
10						
11					İ	
12						
13						
14						
15					<u> </u>	ll
16						
17						
18						
19						
20						
21				l		
22 23						
23						
24						
25						
26						
27						
28						-
29						
30						
				· ——	·	' —— '

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

Spike Recovery Summary

VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER

QA Batch: 1425

Level: DW

^{*} Values outside of QC limits

VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER

QA Batch: 1425

Level: DW

Compound	SPIKE ADDED (ug/L)	BS % REC.	BSD % REC.	RPD
Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethan Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene	2.0 2.0 2.0 2.0 2.0 2.0 2.0	90 95 95 95 90 90	105 110 115 110 110 110	15.4 14.6 19.0 20.0 20.0
2-Chlorotoluene 1,3,5-Trimethylbenzene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene	2.0 2.0 2.0 2.0 2.0 2.0	95 95 95 95 100 90	115 115 115 115 115 110	19.0 19.0 19.0 19.0 14.0 20.0
m-Dichlorobenzene 4-Isopropyltoluene p-Dichlorobenzene n-Butylbenzene o-Dichlorobenzene	2.0 2.0 2.0 2.0 2.0		110 110 115 115 110	14.6 19.0 14.0 20.0 19.0
1,2-Dibromo-3-Chloroprop 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	2.0 2.0 2.0 2.0 2.0	85 90 95 95 95	105 100 110 105 105	21.1 10.5 14.6 10.0
MTBE	2.0	90 .	110	20.0

^{*} Values outside of QC limits

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40860.d

Report Date: 17-Mar-2006 12:49

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40860.d

Lab Smp Id: 1425BS

Inj Date : 17-MAR-2006 12:33

Operator : VOAMS 5 Smp Info : 1425BS Inst ID: VOAMS5.i

Misc Info :

Comment

: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524 2 05.m Method Meth Date: 17-Mar-2006 12:21 lily Quant Type: $\overline{1}S\overline{1}D$ Cal Date : 17-MAR-2006 12:01 Cal File: e40859.d QC Sample: BS

Als bottle: 9

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: 524.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

					CONCENTRA	ATIONS
	DIR TMAUQ				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	, F=== .	==	x======	========	=====	======
1 Dichlorodifluoromethane	85	2.924	2.910 (0.350)	237392	1.94802	1.9
3 Chloromethane	50	3.188	3.175 (0.382)	165934	2.01014	2.0
4 Vinyl Chloride	62	3.394	3.395 (0.406)	174117	1.96344	2.0
5 Bromomethane	94	3.892	3.880 (0.466)	151083	1.82921	1.8
6 Chloroethane	64	4.054	4.026 (0.485)	111209	1.94653	1.9
7 Trichlorofluoromethane	101	4.479	4.467 (0.536)	335760	1.96354	2.0
8 1,1-Dichloroethene	61	5.124	5-112 (0.614)	266647	2.08589	2.1
9 Methylene Chloride	84	5.711	5.699 (0.684)	129907	2.05642	2.0
110 MTBE	73	6.048	6.022 (0.724)	181501	1.84465	1.8
10 trans-1,2-Dichloroethene	96	6.048	6.036 (0.724)	178593	1.95696	2.0
11 l,l-Dichloroethane	63	6.518	6.491 (0.780)	323675	1.94030	1.9
12 cis-1,2-Dichloroethene	96	7.133	7.122 (0.854)	172824	1.95186	2.0
13 2,2-Dichloropropane	77	7.148	7.136 (0.856)	272657	1.92527	1.9
14 Bromochloromethane	128	7.397	7.371 (0.886)	68994	1.96364	2.0
15 Chloroform	83	7.441	7.430 (0.891)	294856	1.88746	1.9
16 1,1,1-Trichloroethane	97	7.676	7.664 (0.919)	295277	1.92298	1.9

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40860.d Report Date: 17-Mar-2006 12:49

					CONCENTR	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==				======
17 1,1-Dichloropropene	75	7.838	7.826 (0.938)	246055	1.81248	1.8
18 Carbon Tetrachloride	117	7.867	7.855 (0.942)	280715	1.94976	1.9
19 Benzene	78	8.072	8.046 (0.967)	491784	1.98609	2.0
20 1,2-Dichloroethane	62	8.072	8.046 (0.967)	114179	2.02664	2.0
* 2 Fluorobenzene	96	8.351	8.325 (1.000)	1391125	5.00000	
21 Trichloroethene	95	8.762	8.736 (1.049)	212310	1.91817	1.9
22 1,2-Dichloropropane	63	9.026	9.000 (1.081)	170912	1.98319	2.0
23 Dibromomethane	93	9.173	9.147 (1.098)	76477	1.90550	1.9
24 Bromodichloromethane	83	9.319	9.293 (1.116)	227747	1.89190	1.9
25 cis-1,3-Dichloropropene	75	9.877	9.865 (1.183)	204432	1.91239	1.9
26 Toluene	92	10.375	10.350 (1.242)	363112	1.94427	1.9
27 trans-1,3-Dichloropropene	75	10.624	10.599 (1.272)	131995	1.91260	1.9
28 1,1,2-Trichloroethane	83	10.932	10.907 (1.309)	72103	1.97222	2.0
29 Tetrachloroethene	166	11.240	11.230 (1.346)	269961	1 93035	1.9
30 1,3 Dichloropropane	76	11.211	11.200 (1.342)	137628	1.82535	1.8
31 Dibromochloromethane	129	11.636	11.611 (1.393)	147891	1.86747	1.9
32 1,2-Dibromoethane	107	11.900	11.875 (1.425)	114515	1.94437	1.9
33 Chlorobenzene	112	12.868	12.843 (1.541)	435430	1.96259	2.0
34 1,1,1,2-Tetrachloroethane	131	13.000	12.975 (1.557)	193455	1.95725	2.0
35 Ethylbenzene	91	13.059	13.048 (1.564)	781032	1.96655	2.0
M 38 Xylene (Total)	100			853653	5.69560	5.7
36 m+p-Xylene	106	13.323	13.298 (1.595)	588124	3.78706	3 - 8
37 o~Xylene	106	14.232	14.207 (1.704)	265528	1.90971	1.9
39 Styrene	104	14.247	14.236 (1.706)	349276	1.69128	1.7
40 Bromoform	173	14.643	14.618 (1.753)	67901	1.79461	1.8
41 Isopropylbenzene	105	14.936	14.926 (1.788)	799918	1.86200	1.9
\$ 42 4-Bromofluorobenzene (SUR)	95	15.229	15.219 (1.824)	728916	4.86135	4.9
43 1,1,2,2-Tetrachloroethane	83	15.420	15.410 (1.846)	97146	1.94015	1.9
45 1,2,3-Trichloropropane	110	15.538	15.513 (1.861)	23937	1.85514	1.8
44 Bromobenzene	156	15.538	15.528 (1.861)	1.63910	1.81450	1.8
46 n-Propylbenzene	91	15.670	15.660 (1.876)	935996	1.90090	1.9
47 2-Chlorotoluene	91	15.846	15.836 (1.897)	551429	1.89859	1.9
48 1,3,5-Trimethylbenzene	105	15.964	15.954 (1.912)	613345	1.90157	1.9
49 4 Chlorotoluene	91	16.023	16.013 (1.919)	600095	1.89440	1.9
50 tert-Butylbenzene	119	16.551	16.541 (1.982)	689690	1.91989	1.9
51 1,2,4-Trimethylbenzene	105	16.639	16.630 (1.992)	603183	1.97205	2.0
52 sec-Butylbenzene	105	16.962	16.938 (2.031)	839532	1.83740	1.8
54 4-Isopropyltoluene	119	17.212	17.202 (2.061)	758679	1.90276	1.9
53 m-Dichlorobenzene	146	17.182	17.173 (2.058)	330521	1.93048	1.9
55 p-Dichlorobenzene	146	17.344	17.335 (2.077)	326061	1.96112	2.0
56 n-Butylbenzene	91	18.020	- 18.010 (2.158)	670320	1.84693	1.8
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.064	18.040 (2.163)	424862`	4.78947	4.8
58 o-Dichlorobenzene	146	18.093	18.084 (2.167)	254830	1.94934	1.9
59 1,2-Dibromo-3-Chloropropane	75	19.634	19.640 (2.351)	13673	1.68157	1.7
60 1,2,4-Trichlorobenzene	180	21.381	21.372 (2.560)	163140	1.78404	1.8
61 Hexachlorobutadiene	225	21.733	21.725 (2.602)	152976	1.93459	1.9
62 Naphthalene	128	21.939	21.931 (2.627)	166378	1.93128	1.9

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40860.d Report Date: 17-Mar-2006 12:49

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	****	==	======	-		
63 1.2.3-Trichlorobenzene	180	22.512	22.489 (2.696)	127684	1.90593	1.9

Sample Info: 1425BS

Volume:

25,0

Column phase: DB624

Instrument: VOAMS5.i

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40861.d

Report Date: 20-Mar-2006 10:42

STL Edison

VOLATILE ORGANICS - METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40861.d

Lab Smp Id: 1425BSD

Inj Date : 17-MAR-2006 13:03

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : 1425BSD

Misc Info :

Comment

Method : /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m

Meth Date : 17-Mar-2006 12:21 lily Quant Type: ISTD

Cal Date : 17-MAR-2006 12:01 Cal File: e40859.d

Als bottle: 10 QC Sample: BSD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 524.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000 25.00000	Dilution Factor Sample Volume

Cpnd Variable Local Compound Variable

				CONCENTRATIONS		
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	· ====	==	=======================================	======	*****	= E = = = = = = = = = = = = = = = = = =
1 Dichlorodifluoromethane	85	2.924	2.910 (0.350)	255314	2.39231	2.4
3 Chloromethane	50	3.174	3.175 (0.380)	178534	2.46959	2.5
4 Vinyl Chloride	62	3.409	3.395 (0.408)	185261	2.38546	2.4
5 Bromomethane	94	3.907	3.880 (0.468)	159621	2.20674 .	2.2
6 Chloroethane	64	4.054	4.026 (0.485)	113969	2.27782	2.3
7 Trichlorofluoromethane	101	4.494	4.467 (0.538)	360580	2.40782	2.4
8 1,1-Dichloroethene	61	5.139	5.112 (0.615)	278480	2.48749	2.5
9 Methylene Chloride	84	5.726	5.699 (0.686)	133588	2.41468	2.4
110 MTBE	73	6.048	6.022 (0.724)	189699	2.20147	2.2
10 trans-1,2-Dichloroethene	96	6.063	6.036 (0.726)	195604	2.44743	2.4
11 1,1-Dichloroethane	63	6.518	6.491 (0.780)	334722	2.29117	2.3
12 cis-1,2-Dichloroethené	96	7.148	7.122 (0.856)	179423	2.31386	2.3
13 2,2-Dichloropropane	77	7.163	7.136 (0.858)	281338	2.26838	2.3
14 Bromochloromethane	128	7.397	7.371 (0.886)	71548	2.32523	2.3
15 Chloroform	83	7.456	7.430 (0.893)	310766	2.27151	2.3
16 1,1,1-Trichloroethane	97	7.691	7.664 (0.921)	306105	2.27630	2.3

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40861.d Report Date: 20-Mar-2006 10:42

	•					CONCENTRA	ATIONS
		QUANT \$1G				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
<u>-</u> -		====	==				
	17 1,1-Dichloropropene	75	7.852	7.826 (0.940)	259801	2.18522	2.2
	18 Carbon Tetrachloride	117	7.867	7.855 (0.942)	291400	2.31110	2.3
	19 Benzene	78	8.072	8.046 (0.967)	500674	2.30883	2.3
	20 1,2-Dichloroethane	62	8.072	8.046 (0.967)	111246	2.25469	2.2
*	2 Fluorobenzene	96	8.351	8.325 (1.000)	1218295	5.00000	
	21 Trichloroethene	95	8.762	8.736 (1.049)	224520	2.31625	2.3
	22 1,2-Dichloropropane	63	9.026	9.000 (1.081)	168278	2.22963	2.2
	23 Dibromomethane	93	9.172	9.147 (1.098)	77926	2.21703	2.2
	24 Bromodichloromethane	83	9.319	9.293 (1.116)	241155	2.28746	2.3
	25 cis-1,3-Dichloropropene	75	9.876	9.865 (1.183)	204940	2.18911	2.2
	26 Toluene	92	10.375	10.350 (1.242)	381783	2.33424	2.3
	27 trans-1,3-Dichloropropene	75	10.639	10.599 (1.274)	126906	2.09973	2.1
	28 1,1,2-Trichloroethane	83	10.932	10.907 (1.309)	70659	2.20691	2.2
	29 Tetrachloroethene	166	11.255	11.230 (1.348)	276527	2.25780	2.2
	30 1,3-Dichloropropane	76	11.226	11.200 (1.344)	145464	2.20296	2.2
	31 Dibromochloromethane	129	11.636	11.611 (1.393)	147994	2.13387	2.1
	32 1,2-Dibromoethane	107	11.915	11.875 (1.427)	116511	2.25891	2.2
	33 Chlorobenzene	112	12.867	12.843 (1.541)	440962	2.26949	2.3
	34 1,1,1,2-Tetrachloroethane	131	13.000	12.975 (1.557)	188398	2.17649	2.2
	35 Ethylbenzene	91	13.058	13.048 (1.564)	802396	2.30695	2.3 ,
M	38 Xylene (Total)	100			878034	6.68934	. 6.7
	36 m+p-Xylene	106	13.323	13.298 (1.595)	603946	4.44064	4.4
	37 o-Xylene	106	14.232	14.207 (1.704)	274088	2.25091	2.2
	39 Styrene	104	14.246	14.236 (1.706)	349174	1.93065	1.9
	40 Bromoform	173	14.642	14.618 (1.753)	68512	2.06761	2.1
	41 Isopropylbenzene	105	14.950	14.926 (1.790)	818699	2.17607	2.2
\$	42 4-Bromofluorobenzene (SUR)	95	15.243	15.219 (1.825)	751822	5.72543	5.7
	43 1,1,2,2-Tetrachloroethane	83	15.434	15.410 (1.848)	101525	2.31524	2.3
	45 1,2,3-Trichloropropane	110	15.537	15.513 (1.861)	24962	2.20899	2.2
	44 Bromobenzene	156	15.537	15.528 (1.861)	170878	2.15998	2.2
	46 n-Propylbenzene	91	15.684	15.660 (1.878)	962509	2.23205	2.2
	47 2-Chlorotoluene	91	15.846	15.836 (1.897)	591951	2.32724	2.3
	48 1,3,5-Trimethylbenzene	105	15.963	15.954 (1.912)	652034	2.30829	2.3
	49 4-Chlorotoluene	91	16.037	16.013 (1.920)	647920	2.33553	2.3
	50 tert-Butylbenzene	119	16.550	16.541 (1.982)	714409	2.27082	2.3
	51 1,2,4-Trimethylbenzene	105	16.638	16.63 <u>0</u> (1.992)	618417	2.30868	2.3
	52 sec-Butylbenzene	105	16.961	16.938 (2.031)	862371	2.15513	2.2
	54 4-Isopropyltoluene	119	17.211	17.202 (2.061)	789511	2.26098	2.3
	53 m-Dichlorobenzene	146	17.196	17.173 (2.059)	338090	2.25482	2.2
	55 p-Dichlorobenzene	146	17.358	17.335 (2.079)	332469	2.28333	2.3
	56 n-Butylbenzene	91	18.019	18.010 (2.158)	698057	2.19620	2.2.
\$	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.048	18.040 (2.161)	442799	5.69981	5.7
	58 o-Dichlorobenzene	146	18.092	18.084 (2.166)	261958	2.28814	2.3
	59 1,2-Dibromo-3-Chloropropane	75	19:633	19.640 (2.351)	15157	2.12849	2.1
	60 1,2,4-Trichlorobenzene	180	21.378	21.372 (2.560)	164528	2.05446	2.0
	61 Hexachlorobutadiene	225	21.746	21.725 (2.604)	155632	2.24739	2.2
	62 Naphthalene	128	21.952	21.931 (2.629)	161505	2.14066	2.1

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40861.d Report Date: 20-Mar-2006 10:42

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==		ZZZZ====	======	
63 1 2.3-Trichlorobenzene	180	22.509	22.489 (2.695)	121057	2.06336	2.1

Instrument: VOAMS5.i

VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER

QA Batch: 1427

Level: DW

	SPIKE ADDED	BS %	BSD %	
Compound	(ug/L)	REC.	REC.	RPD
		========		========
Acetone	20	100	120	18.2
2-Butanone	20	120	115	4.3
4-Methyl-2-pentanone	20	120	110	8.7
2-Hexanone	20	110	105	4.7
Carbon Disulfide	20	80	85	6.1
Diethyl Ether	20	105	100	4.9
Iodomethane	20	95	90	5.4
Allyl Chloride	20	90	90	0.0
Acrylonitrile	200	115	110	4.4
Propionitrile	200	125	115	8.3
Methyl Acrylate	20	115	110	4.4
Methacrylonitrile	20	110	105	4.7
Tetrahydrofuran	20	115	120	4.3
1-Chlorobutane	20	90	85	5.7
Methyl Methacrylate	20	130	115	12.2
2-Nitropropane	200	115	110	4.4
Chloroacetonitrile	200	120	115	4.3
1,1-Dichloropropanone	20	120	125	4.1
Ethyl Methacrylate	20	125	110	12.8
trans-1,4-Dichloro-2-but	20	110	100	9.5
Pentachloroethane	20	100	95	5.1
Hexachloroethane	20	90	90	0,.0
Nitrobenzene	200	120	115	4.3

^{*} Values outside of QC limits

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40862.d

Report Date: 20-Mar-2006 13:34

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40862.d Lab Smp Id: 1427BS Client Smp ID: 1427BS

Inj Date : 17-MAR-2006 13:33

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : 1427BS-R4

Misc Info :

Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:34 lily Quant Type: ISTD Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d

QC Sample: BS

Als bottle: 11 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable Local Compound Variable

					CONCENTRA	ations
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==		======	222255	
125 Diethyl Ether	59	4.816	4.787 (0.576)	649273	20.7629	. 21
113 Acetone	43	5.212	5.168 (0.623)	51296	20.3902	20
126 Iodomethane	142	5.343	5.315 (0.639)	3569750	18.6893	19
120 Carbon Disulfide	76	5.446	5.418 (0.651)	3835552	16.1401	16
127 Allyl Chloride	76	5.578	5.550 (0.667)	964499	18.3261	18
128 Acrylonitrile	52	6.003	5.975 (0.718)	776906	232.864	230
114 2-Butanone	43	7.147	7.119 (0.854)	167006	24.3701	24
129 Propionitrile	54	7.205	7.177 (0.862)	298050	248.174	250
130 Methyl Acrylate	55	7.235	7.207 (0.865)	458274	22.8945	23
131 Methacrylonitrile	67	7.367	7.339 (0.881)	121735	22.0666	22
132 Tetrahydrofuran	71	7.455	7.441 (0.891)	31109	22.9753	23
133 1-Chlorobutane	56	7.763	7.749 (0.928)	3945305	17.9480	18
* 2 Fluorobenzene	96	8.364	8.336 (1.000)	1416955	5.00000	
134 Methyl Methacrylate	69	9.067	9.054 (1.084)	443859	25.9228	26
136 Chloroacetonitrile	48	9.566	9.538 (1.144)	84945	236.155	240
135 2-Nitropropane	43	9.566	9.553 (1.144)	1262106	231.682	230

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40862.d Report Date: 20-Mar-2006 13:34

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	######################################	====	==				
115	4-Methyl-2-pentanone	43	10.035	10.007 (1.200)	436751	23.9159	24
137	1,1-Dichloropropanone	43	10.138	10.110 (1.212)	339870	24.0332	24
138	Ethyl Methacrylate	69	10.695	10.667 (1.279)	891138	24.8676	25
119	2-Hexanone	43	11.296	11.269 (1.351)	260630	22.4085	22
\$ 42	4-Bromofluorobenzene (SUR)	95	15.238	15.226 (1.822)	723739	4.41874	4.4
139	trans-1,4-Dichloro-2-butene	53	15.546	15.519 (1.859)	159490	21.7069	22
140	Pentachloroethane	167	16.603	16.576 (1.985)	1327858	20.4113	20
\$ 57	1,2-Dichlorobenzene-d4 (SUR)	152	18.055	18.044 (2.159)	412774	4.26804	4.3
141	Hexachloroethane	117	18.643	18.617 (2.229)	2791961	18.5989	18
142	Nitrobenzene	51	20.066	20.041 (2.399)	81826	241 262	240

Data File: /chem/VDAMS5.i/524-R4/03-07-06/17mar06.b/e40862.d

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40863.d

Report Date: 20-Mar-2006 13:34

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40863.d

Lab Smp Id: 1427BSD-R4

Inj Date : 17-MAR-2006 14:03

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : 1427BSD-R4

Misc Info :

Comment

Method: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4_04.m

Meth Date: 20-Mar-2006 13:34 lily Quant Type: ISTD

Cal Date: 07-MAR-2006 15:17 Cal File: e40746.d

Als bottle: 12 QC Sample: BSD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.s

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000 25.00000	Dilution Factor Sample Volume

Cpnd Variable Local Compound Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
ls	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==				~====±±
ethyl Ether	59	4.817	4.787 (0.576)	614394	19.6426	20
etone	43	5.199	5.168 (0.621)	60812	24.1668	24
domethane	142	5.345	5.315 (0.639)	3459781	18.1090	18
rbon Disulfide	76	5.448	5.418 (0.651)	4002683	16.8392	17
lyl Chloride	76	5.580	5.550 (0.667)	950481	18.0552	18
rylonitrile	52	6.006	5.975 (0.718)	721369	216.164	220
Butanone	43	7.150	7.119 (0.854)	157527	22.9812	23
opionitrile	54	7.209	7.177 (0.862)	278579	231.903	230
thyl Acrylate	55	7.238	7.207 (0.865)	438459	21.8991	22
thacrylonitrile	67	7.370	7.339 (0.881)	117044	21.2110	21
trahydrofuran	71	7.458	7.441 (0.891)	32739	: 24.1730	24
Chlorobutane	56	7.766	7.749 (0.928)	3815440	17.3529	17
uorobenzene	96	8.368	8.336 (1.000)	1417310	5.00000	
thyl Methacrylate	69	9.072	9.054 (1.084)	389216	22.7257	23
loroacetonitrile	48	9.571	9.538 (1.144)	82694	229.840	230
Nitropropane	43	9.571	9.553 (1.144)	1188576	218.129	220
	ethyl Ether etone domethane rbon Disulfide lyl Chloride rylonitrile Butanone opionitrile thyl Acrylate thacrylonitrile trahydrofuran Chlorobutane uorobenzene thyl Methacrylate loroacetonitrile	### MASS ###################################	### MASS RT #### ###############################	MASS RT EXP RT REL RT ===================================	MASS RT EXP RT REI, RT RESPONSE EXECUTED TO SET IN THE SET IN TRESPONSE EXECUTED TO SET IN THE SET IN TH	MASS RT EXP RT REL RT RESPONSE (ug/L) ethyl Ether 59 4.817 4.787 (0.576) 614394 19.6426 etone 43 5.199 5.168 (0.621) 60812 24.1668 domethane 142 5.345 5.315 (0.639) 3459781 18.1090 rbon Disulfide 76 5.448 5.418 (0.651) 4002683 16.8392 lyl Chloride 76 5.580 5.550 (0.667) 950481 18.0552 rylonitrile 52 6.006 5.975 (0.718) 721369 216.164 Butanone 43 7.150 7.119 (0.854) 157527 22.9812 opionitrile 54 7.209 7.177 (0.862) 278579 231.903 thyl Acrylate 55 7.238 7.207 (0.865) 438459 21.8991 thacrylonitrile 67 7.370 7.339 (0.881) 117044 21.2110 trahydrofuran 71 7.458 7.441 (0.891) 32739 (24.1730 Chlorobutane 96 8.368 8.336 (1.000) 1417310 5.00000 thyl Methacrylate 69 9.072 9.054 (1.084) 389216 22.7257 horoacetonitrile 48 9.571 9.538 (1.144) 82694 229.840

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40863.d Report Date: 20-Mar-2006 13:34

				·		CONCENTRA	LITONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
		====	= =	======================================	=======	****	======
115	4-Methyl-2-pentanone	43	10.040	10.007 (1.200)	410720	22 - 4849	22
137	1,1-Dichloropropanone	43	10.128	10.110 (1.210)	354866	25.0873	25
138	Ethyl Methacrylate	69	10.700	10.667 (1.279)	797650	22.2532	22
119	2-Hexanone	43.	11.301	11.269 (1.351)	241155	20.7289	21
\$ 42	4-Bromofluorobenzene (SUR)	95	15.244	15.226 (1.822)	724544	4.42255	4.4
139	trans-1,4-Dichloro-2-butene	53	15.552	15.519 (1.859)	148868	20.2561	20
140	Pentachloroethane	167	16.608	16.576 (1.985)	1252145	19.2426	19
\$ 57	1,2-Dichlorobenzene-d4 (SUR)	152	18.061	18.044 (2.158)	414424	4.28403	4.3
141	Hexachloroethane	117	18.648	18.617 (2.229)	2696048	17.9555	18
142	Nitrobenzene	51	20.057	20.041 (2.397)	78968	232.777	230

Internal Standard Area and RT Summary

Lab File ID (Standard): E40853

Date Analyzed: 03/17/06

Instrument ID: VOAMS5

Time Analyzed: 0823

		IS1	<u> </u>							
			RT	#	AREA	#	RT	#	AREA #	RT #
	12 HOUR STD UPPER LIMIT LOWER LIMIT LABORATORY	1414562 2829124 990193	8.3 8.8 7.8	2 -						======
01 02 03	SAMPLE NO. ====================================	1391125 1218295 1377022	8.3 8.3 8.3	5 5		= = 		==		======
04 05 06 07		1377022				_				
08 09 10 11										
12 13 14 15 16						_		 		
17 18 19 20										
21 22				_				_		

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 30% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab File ID (Standard): E40853

Date Analyzed: 03/17/06

Instrument ID: VOAMS5

Time Analyzed: 0823

1		T (1)		г						<u></u>			
		IS1											
		AREA	#	RT	#	AREA	#	RT	#	AREA	#	RT	#
=====		=======	===		==	======	===	=====	==	=======	==	=====	==
	HOUR STD	141456		8.3									
	ER LIMIT	282912		8.8									
LOWI	ER LIMIT	99019	3	7.8	2								
	=======	=== ===	===	=====	==	======	===	=====	==		=	=====	==
	DRATORY												
SAMI	PLE NO.												
=====	=======	=======	==	=====	==	======	===	=====	==		=	=====	==
01 EV076		137702	2	8.3	6								
02 71518	38	142852	25	8.3	7								
03													—
04								-			-		
05						-					_		
06						-					_		
07										·	-		
08	··				_			-					-1
09			—								-		
10											-		
11					[_		-		
12		-			I	-					-		
13									_				— I
14											-		
15									—		-	-	— i
16											-		
17													
18											_		— l
19							 }				_,		
20											_		
21 -							l		—				<u> </u>
22			<u> </u>		— I						_		<u> </u>
~~													

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 30% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab File ID (Standard): E40858 Date Anal

Date Analyzed: 03/17/06

Instrument ID: VOAMS5 Time Analyzed: 1130

								1		I
		AREA	#	RT	#	AREA	#	RT #	AREA #	RT #
=====	======	======	===		==	======	==	======		======
	OUR STD	127922		8.3						
	R LIMIT R LIMIT	25584		8.8						
į.	E PIMIL	8954!	59	7.8	14					
LABO	RATORY LE NO.	= = = = = = = : 			==	==== = =	==			
I	======	 === ====	===	 === = =			==			
01 1427B	S	141695	55	8.3	6					
02 1427B	SD-R4	14173		8.3						
03 EV076	A	13986	50	8.3						<u> </u>
04										
05										
06										
07					<u></u>			<u> </u>		
08		·								
09 10								·		
11										-
12		· ———								
13										
14										
15										
16				·						
17										
18							—			
19							_			
20										
21									:	
22										

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 30% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab File ID (Standard): E40858

Date Analyzed: 03/17/06

Instrument ID: VOAMS5

Time Analyzed: 1130

	l			,	. ,		
	l i	IS1	•	1			
		AREA #	RT #	AREA	# RT :	# AREA #	RT #
		 =========					L
	12 HOUR STD	1279227	8.34		_	- -	
	UPPER LIMIT	2558454	8.84				
	LOWER LIMIT	895459	7.84				
	=======	=======	======	=======	= ======	= =======	======
	LABORATORY		l				1
	SAMPLE NO.						1 1
	=========		_	 	_	_	
01	EV076A	1200660			= == == :	- =======	=====
		1398660	8.36		_	-	l
02	715188	1451087	8.37				ii
03							
04							
05						_	
06							
07					_	-	
08					_	_	
					_ i	_	
09					_ [_	
10					1		
11					_		
12	-					-	
13					-	_	
14					_	_	
15					_	_	
					_ '	_	
16							
17							
18						-	
19		· · · · · · · · · · · · · · · · · · ·				-	
20					-	-	
21					_		li
<u>4</u>					_		l
22							
						- /	· ——— ·

= Fluorobenzene IS1

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 30% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

Injection Log Book

ANALYTICAL INJECTION LOG SUMMARY STL EDISON

lent ID: VOAMS5.i
cal Batch: /chem/VOAMS5.i/524/03-17-06/17mar06.b

nerated: 03/20/2006

COMMENTS				2 (-	1 (1) OF 7 (COM)		
STD		524.2 GAS 50: VØ5~143	MIX1 50: (47) MTRE/TE:	TBA: (03)	524R4: GAS BS:	147 8260BS: 15.3 574BA BS:	18/88: 18 11/35	BFB SS.						
На —									_	_		- - اع		ب با
1.PB											2/ 3/2 10/2			
Sublist						per4		4	-	1	41	5#		
	 a11	- la	all			ali	all	524	524	all	524	524	524	_
Dil		e e	1		*4	1	1		1	1		1	1	
۸ <u>.</u>														
	<u> </u>	<u> </u>	_	_					_	_ _			<u> </u>	- -
/vi 	0	25	25	25	25	25	25	25	25	25	25	25	25	
. (-	<u> </u>		- - - -	 		 -			1425	11425	
- dob	<u> </u> 		 				_		<u> </u> 	_	N911	. [0521	0523	 -
Client ID											TB	840SMST	g 481LOCK	
ple D	9	2		10							00	שׁ	8	
S Sample	EBFB076	ESTD002	ESTDOOL	ESTDOOS	ESTD020	ESTD040	ESTD001	1425BS	1425BSD	EV076	712293	715152	715154	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALS		~ _	<u></u>	<u></u>	10	<u> </u> <u> </u>		6 _	<u> </u>	113	14	115	116	
Data File	0752 e40852.d	06 0823 e40853.d	06 0924 e40854.d	e40855.d	ว6 1025 e40856.d	1055 e40857.d	1201 e40859.d)6 1233 e40860.d	1303 e40861.d	}6 1433 e40864.d	16 1503 e40865.d	1533 e40866.d	1603 e40867.d	1633 P40868 A
υ Φ	06 0752	6.0823	0924	16 0954	1025	16 1055)6 1201	6 1233	1303	6 1433	6 1503	6 1533	6 1603	6 1633

STL EDISON ANALYTICAL INJECTION LOG SUMMARY

ient ID: VOAMS5.i
cal Batch: /chem/VOAMS5.i/524/03-17-06/17mar06.b

nerated: 03/20/2006

		_				-
COMMENTS		5 (<u></u>	- (
STD						
PH		_ ع - عار _		ار ا	_ _ ا	
I.PB		1 (200/10				
Sublist	524	524	524	524	524	524
Dil'		***	1		el	
DE	<u> </u>	0 -	0 -	0 -		0 _
Job QA IV/ # IW	0527 1425 25	0528 1425 25	0531 1425 25	0532 1425 25	0533 1425 25	0535 1425 25
Client ID	441LOCK	437LOCK	B 425LOCK	V 480LOCK	700LOCK	6 RT22
mple ID	5 B	2	i	ļ	A	1 1
ALS Sample ID	71516	71516	71518	71518	171519	71519
AL.	- -	1 19	1 120	27		1 23
Date	06 1702 e40869.d 18 715165	06 1732 e40870.d 19 715166	06 1802 e40871.d 20 715188	06 1832 e40872.d 21 715189	06 1902 e40873.d 22 715190	06 1932 e40874.d 23 715192
n 0	06 1702	06 1732	06 1802	06 1832	06 1902	06 1932

3/22/06

Read and Understood by:

STL Edison

STL EDISON
ANALYTICAL INJECTION LOG SUMMARY

ANALYTICAL INJECTION LOument ID: VOAMS5.i
tical Batch: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b

Generated: 03/08/2006

Date Data	ALS	s Sample		Client ID	dor	5	IV/	FV	Dil	Sublist	LPB	Hd	STD	OTWING
File		a 			#		WI		H Ra C		<u> </u>	- — ! - —	TOI	C T MINISTER
7/06 0948 e40735a.		EBFB066a			 		0			all				
7/06 1232 e40741.d	_ و ا	ESTD020-R4	42				25	0		 a11			524.2 GAS 50:	5
7/06 1302 e40742.d		ESTD020-R4	45				25	0					MIX1 50; MTBE/TE:	N. (
7/06 1447 e40745.d	101	ESTD040-R4	25 		 		25	0		 a11			TBA:	5
7/06 1517 e40746.d	<u> </u>	ESTD005-R4	- E				25	0		- all			524R4: 106~10/ GAS BS:	
/06 1547 e40747.d	12 -	1273BSD-R4	\\ \frac{\mathbf{z}}{				25	0		all		_	8260BS:	J (
/06 1616 e40748a.	13	EV066a	<u> </u>				25	0		ail			18/88: (18/17/5)	J (
/06 1716 e40750a.	115	712405	T	61479	N949	1273 25	25	0	1	ACE	- ASS		BFB SS: MISC:	J (
/06 1746 e40751a.	19	712407	٦	C 61481	N949	1273 25		0 1		ACE		<u> </u>	·	<i>D</i> (
/06 1816 e40752a.	117	712408	<u>_</u>	61482	N949	1273 25	25	0		ACE		<u>-</u>	·	5
/06 1846 e40753.d	138	712401	10	C 61477	N947	1273 25	25	0_	1	ACE			' -	5 (
/06 1915 e40754.d	119	712402	<u> </u>	C 61478	N947	1273 25		0	1	ACE		- - - _[
/06 1945 e40755.d	120	712400	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	61476	N947	1273 25	25	0		ACE				-
/06 2015 e40756.d		712406	25	61480	N949	1273 25	35	0	110	ACE				PAION X
												=		メック・メ

Read and Understood by: MMM (12

..[!] 125

STL Edison

STL EDISON . ANALYTICAL INJECTION LOG SUMMARY

nerated: 03/20/2006

Data	ALS	s R	<u>a</u>	Client ID	J Job	- AO	/\nI	ΡV	lid	Sublist	EG.1	PH	STD	COMMENTS
]			 # 	<u> </u>	3. 3.		Fac				LOT	
е40852а.	<u>~</u>	EBFB076a						0	<u></u>	- all				. (
1130 e40858.d		ESTD076-R4	R4			25		0	<u> </u>	a11			524.2 GAS 50:	<u></u>
1333 e40862.d	77	1427BS-R4	42,					0	-	 a11	_		MIX1 50;	0
1403 e40863.d	12 -	1427BSD-R4	- R4			25		0		all	_ _		MIBE/IF: TBA:	
e40864a,	13	EV076a					1.5.5	0			1	<u> </u>	524R4: Vo 6 10 (GAS BS:	
1533 e40866a,	135	715152	ம	840SMST	0521	1.427 2,5		0		all	150 V/6A		8260BS:	
1.603 e40867a.	91	715154	42	481LOCK	0523	1427 25		0		all		- - - - - - - - - - - - - - - -	524R4 BS: VV6 - [0.2 IS/SS:	5
e40868a.	17	715155	0	476LOCK	0524	1427 25		0	1	all			BFB SS: MISC:	
1702 e40869a.	1.8	715165	4	441LOCK	0527	1427 25		0		all		 _ اه		5 (
1732 e40870a.	119	715166	A	437LOCK	0528	1427 25		0		lla lla				
1802 e40871a.	02	715188	40	425LOCK	0531	1427 25		0		all		 اور ايــ		5
e40872a.	21	715189	۵	480LOCK	0532	1427 25		0		all				
1902 e40873a.	22	715190	<u> </u>	7.0 OLOCK	0533	1427 25		0		all		_ _ _ و _		
1932 e40874a.	23	715192	 - W	RT22	0535	1427 25		P		 all	1	 اع اند		
														D

120 106 Read and Understood by: Mr. 42 3.20.0 6

0531

This is the Last Page of the Document